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ABSTRACT

Learning on graphs (a.k.a. graph-based learning) mainly aims to analyze the
property of entities (e.g., predict entity attributes) from graphs where entities
and entity relations are represented as nodes1 and edges, respectively. Graph-
based learning plays a crucial role in a variety of emerging applications in
disciplines including physics, biology, chemistry, social and information science.
For instance, in social science, graph-based learning is a typical solution for social
network applications such as targeted advertising and recommendation.

Most of the existing graph-based learning methods mainly model graph structure
based on a local smoothness assumption, that is closely connected nodes have
similar predictions. Specifically, this assumption is typically implemented
via either a graph Laplacian regularization or node embedding diffussion over
the graph structure. However, in addition to the graph structure, these
implementations of local smoothness largely ignore the rich information in graph
applications such as various edge attributes, dynamic vertex features, and rich
domain knowledge, which contain additional clues for local smoothness.

In this thesis, we investigate techniques to thoroughly mine the graph data so as
to enhance the modeling of local smoothness. In particular, 1) we devise a multi-
relation learning framework which improves the modeling of local smoothness by
jointly considering multiple types of relations between vertices. 2) We design a
new regularization term to encode domain knowledge which could guide the
local smoothness modeling. 3) We propose a new neural network operator which
adaptively adjusts the strength of smoothness between vertices in a time-aware
manner according to the dynamic features of vertices. 4) We develop a new
adversarial training approach which aims to enhance the robustness of local
smoothness modeling by additionally performing adversarial perturbations on
vertex features.

The proposed methods leverage different types of additional information
to enhance local smoothness modeling suitable for different kinds of graph
applications. Therefore, we apply the methods on different applications to
conduct experiments, in particular, 1) university ranking (multiple relations),
2) popularity prediction (domain knowledge), 3) stock ranking (dynamic vertex
features), and 4) conventional node classification applications (adversarial
perturbations). Extensive experiments demonstrate the effectiveness of the
proposed methods and validate the necessity of jointly encoding graph structure
along with additional information for local smoothness modeling.

1Node is also widely termed as vertex. In the following, we interchangeably use node and
vertex.
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Chapter 1

Introduction

Graphs are natural representations of relational data where vertices and edges

represent entities of interest and relations between them, respectively [39]. In the

era of big data, graphs are playing more crucial roles in modeling the relations

and processes in physical [12], biological [52], chemical [46], social [66], and

information systems [89]. For instance, graphs can be used to represent atomic

structures, molecule, protein-protein interactions, user friendships, and bank

transaction flows. With graph representations of entities and their relations

in these disciplines, analysis of graphs is crucial in a variety of associated

applications. A large portion of these applications forms a main graph-oriented

task, vertex prediction [89, 49, 48]. The target of vertex prediction is to forecast

the attributes of the vertices which could be either categorical (e.g., interests

and demography of social network users) or numerical (e.g., income and credit

score of the users).

Learning on graphs (a.k.a. graph-based learning) tackles the vertex prediction

task as a machine learning problem with graphs as inputs. As compared to

standard classification solutions that mainly encode vertex features, graph-based

learning additionally incorporates graph structure into the prediction. The

existing graph-based learning approaches mainly encodes the graph structure

based on a local smoothness assumption, i.e., connected vertices tend to have

similar predictions. Traditional approaches [195, 189] implement the assumption

through a graph Laplacian regularization which encourages closely connected

1



vertices to be predicted with similar labels. More recently, there has been a

surge of graph representation learning approaches [127, 147, 63, 176, 37, 89, 154]

that map vertices as points in a low-dimensional embedding space. Generally,

the representation learning approaches achieve the local smoothness assumption

via forcing connected vertices to be geometrically close in the embedding space.

We argue that the core of graph-based learning is the joint modeling of graph

structure (i.e., vertex connectedness) and additional information, e.g., edge

attributes, vertex features, and domain knowledge, to accurately model the local

smoothness and comprehensively describe the entities. The existing methods

mainly focus on vertex connectedness, but pay less attention on the additional

information that indicates the property of connectedness. As such, the existing

methods might not be suitable for graph applications with complex practical

scenario and additional information from both edge and vertex perspectives.

For instance:

• Multiple types of relations (edge perspective). In a real-world social media

like Twitter and Facebook, users would interact with each other via multiple

types of actions including follow, like, reply, and repost. Considering that

different interactions reflect different kinds of connections, existing methods

that intuitively focus on a single interaction or neglect the difference between

interactions would not comprehensively model the local smoothness. As such,

they would be suboptimal for predicting user attributes, which motivates the

consideration of multiple relations in graph-based learning.

• Graph-based domain knowledge (edge perspective). Insufficient labeled data

and frequent cold-start entities are common in many graph applications, which

gives rise to requirement of models with strong generalization. In standard

classification, incorporating domain knowledge into the data-driven learning

framework could complement the training data and lead to models with better

generalization [76, 80, 140]. Graph-based domain knowledge, which typically

involves more than one vertex, widely exists in many graph applications

such as product recommendation [165] and text retrieval [172]. Therefore,

incorporating domain knowledge into graph-based learning methods would

be desirable to enhance the modeling of local smoothness and lead to better

2
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Figure 1.1: Intuitive illustration of the position of our methods as
compared to general graph-based learning ones.

prediction performance.

• Dynamic features (vertex perspective). Dynamic features are the attributes

of vertices which naturally varies over time. For instance, in a product graph

with substitutable and complementary relations [166], the price of product

is a dynamic feature. We argue that the strength of vertex connections

might change along with the update of vertex features. For instance, a

substitutable relation could become weak if the price of one connected product

increases a lot. Obviously, lacking of accounting for the temporal property of

vertex features by ignoring the changes on connection strength would lead to

inaccurate modeling of local smoothness. As such, the existing approaches

would be less effective for applications like sales prediction and advertising.

• Adversarial perturbations (vertex perspective). Adversarial perturbations

are also performed on vertex features, resulting in feature changes. Unlike

dynamic features which change according to the inherent status of the vertex,

adversarial perturbations are intentionally performed to fool the graph-based

learning model. In many graph applications, driven by profit, such adversarial

perturbations could frequently be performed by crackers from the underground

economy even end-users. For instance, in a recommender system, a merchant

would intentionally change the description of the product so that it would be

more frequently recommended to consumers than its competitor. Previous

research has shown that graph-based learning methods, especially the recent

graph representation learning ones, are vulnerable to such perturbations [197].

Hence, it is essential to incorporate adversarial perturbations in graph-based

learning.

3



In this thesis, we investigate techniques to enhance the modeling of local

smoothness and improve graph-based learning by considering information

in addition to connectedness, including multiple types of relations, graph-

based domain knowledge, dynamic vertex features, and adversarial vertex

perturbations. In particular,

• Type-aware local smoothness. To better solve the graph-oriented task, we

account for multiple types of relations in the modeling of local smoothness,

that is, modeling local smoothness in a type-aware manner. In some graph

applications, it is non-trivial to appropriately model the smoothness/similarity

between entities with multiple types of relations. This is mainly because

the various semantic meanings across different relations and the complex

connections across different relations. For instance, in a social network, users

have relations based on follow, like, reply and etc., which could reflect different

affinities between users. Moreover, different types of relations are connected

with each other, e.g., it is unlikely that a like relation exists between users

without a follow relation. Therefore, the key to accurately modeling type-

aware local smoothness is to appropriately model the property of different

relations and the connections across relations. Towards this end, we propose

a new graph Laplacian-based learning framework which encodes multiple

relations between entities and captures the correlation between different types

of relations.

• Rule-guided local smoothness. While accounting for graph-based domain

knowledge in the modeling of local smoothness can result in a better model,

it is insufficient to directly employ the existing methods in standard machine

learning tasks [76, 80, 140]. The reasons are two-fold: 1) the knowledge in the

vertex prediction task could be in a variety of formats involving single vertex,

a pair of vertices, or even a group of vertices. It is more complex than standard

learning tasks where knowledge typically involves only one entity. 2) Different

graph-based learning approaches implement local smoothness in different

manners, leading to challenges in devising a general solution to incorporate

knowledge. By analyzing some typical vertex prediction applications, we find

that domain knowledge in such applications can typically be represented as

partial-order rules. One partial-order rule includes one kind of partial-order
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relation [44] on the vertex set and a pair-wise rule for making prediction. For

instance, a video posted by a more influential user (e.g., has more followers)

tends to be more popular. To encode partial-order rules in a general manner,

we design a regularization term which can be additionally applied to most

existing graph-based learning approaches.

• Time-sensitive local smoothness. Despite that vertex connections (i.e.,

with/without edges) are static in many applications, the strength of

connections might vary over time. As such, it is desirable to encode the

temporal property of vertex connections at different timestamps in local

smoothness modeling, instead of treating them as static. The key challenge of

dynamically adjusting the local smoothness in a time-sensitive manner is the

implicitness of the strength of connection between vertices. Dynamic vertex

features could reflect the status of the entities and potentially indicate the

temporal property of the connection between entities. For instance, in a graph

of a supplychain, the connection between a supplier and a consumer would

become stronger when the consumer is launching its new product, which could

be inferred from the dynamic cashflow feature of the consumer. As such, we

incorporate dynamic vertex features into the modeling of local smoothness to

capture the temporal property of vertex connections. In particular, we devise

a new operator for graph neural network, named Temporal Graph Convolution,

which learns vertex representations in a time-sensitive manner.

• Dynamic local smoothness. To defend against adversarial perturbations, there

is a strong need to stabilize graph-based learning models, especially neural

network-based models, i.e., the model should not change the predictions

much when perturbation happens. Adversarial Training (AT) has empirically

shown to be able to stabilize neural networks, enhancing their robustness

against perturbations in standard classification tasks [93, 111]. Specifically, it

can be seen as a dynamic regularization technique that proactively simulates

perturbations during the training phase [60]. Therefore, we believe that an

equivalent of AT on a graph neural network model would also be helpful to the

model’s robustness. However, directly employing AT on graph neural network

is insufficient, since it treats vertices as independent of each other and does

not consider the impact from connected vertices. To tackle such limitation,
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we propose to explore graph adversarial training techniques which is a form

of dynamic local smoothness that can resist perturbations from connected

vertices.

In Figure 1.1, we intuitively depict the position of our techniques as compared

to general graph-based learning approaches. As shown in Figure 1.1(a),

most existing graph-based learning methods model local smoothness mainly

via considering the connectedness between vertices. In contrast, as shown

in Figure 1.1(b), our methods further leverages information from both edge

perspective and vertex perspective in addition to the connectedness. On one

hand, from the edge perspective, we enhance the modeling of local smoothness

by additionally considering: 1) multi-type vertex relations; and 2) partial-order

rules. On the other hand, we encode additional vertex information: 3) dynamic

vertex features, and 4) adversarial perturbations to comprehensively model local

smoothness.

Outline: The remainder of this thesis is organized as follows. We first review

the literature on graph-based learning in Chapter 2. We describe our first

work on multi-relation learning towards the computation of social indicators in

Chapter 3. In Chapter 4, we present the second work of learning on partial-order

hypergraphs, followed by introducing the third work on temporal graph-based

learning for stock prediction in Chapter 5. Finally, we introduce the dynamic

local smoothness modeling through graph adversarial training in Chapter 6,

followed by the conclusion and future works for this thesis in Chapter 7.

6



Chapter 2

Literature Review

In this chapter, we first summarize and compare a variety of graphs with different

properties to represent different kinds of relational data. We then review the

prior efforts on graph-based learning, which has attracted a lot of attention in

recent decades. We can roughly divide the methods into two groups: graph

Laplacian regularization and graph representation learning. In this chapter, we

mainly discuss graph-based learning approaches since this thesis focuses on the

learning methods. For work on using these methods to different applications,

we refer the readers to some recent surveys [34, 67, 182, 192, 186]. Moreover,

we summarize the latest research on the applications used to test our proposed

methods in the following four chapters, respectively.

We first introduce some notations used in this thesis. We use bold capital letters

(e.g., X), bold lowercase letters (e.g., x), and capital script letters (e.g., X ) to

denote matrices, vectors, and tensors, respectively. Scalars and hyperparameters

are respectively represented as normal lowercase letters (e.g., x) and Greek

letters (e.g., λ). In addition, tr(X) denotes the trace of X. If not otherwise

specified, all vectors are in a column form, and Xij denotes the entry at the

i-th row and the j-th column of X. The symbols σ, tanh, and � stand for

the sigmoid function, hyperbolic tangent function, and element-wise product

operation, respectively.
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2.1 Graphs

If not otherwise specified, graphs mean simple graphs, detailed as G = (V, E),

comprise of a set of N vertices (V) representing entities of interested and a set

of edges (E) representing relations between entity pairs [39]. The edges could

be either directed or undirected depending on whether the pairwise relationship

between entities is symmetric. For example, a modulate graph representing its

structure is an undirected graph. The World Wide Web is a well-known instance

of directed graphs, where vertices represent webpages, and edges represent

hyperlinks. Formally, a simple graph is typically represented as an adjacency

matrix A ∈ RN×N with binary entries where Aij = 1 means there is an edge

between i and j. Simple graph is the simplest format of graph data where only

vertex connectedness is encoded.

To enhance representation ability, various generalizations of the simple graph

have been proposed. One generalization of simple graph is hypergraph where

edges (a.k.a. hyperedges) connect a set of vertices, enabling it to represent

higher-order relations among vertices [190]. Another generalization is the

attributed graph in which each vertex is associated with a vector xi comprising of

a set of vertex attributes [128]. By incorporating vertex features, an attributed

graph naturally enhances the representation ability of simple graph and is more

suitable for tasks in which vertex features play crucial roles. Naturally, another

direction to extend simple graph is to associate edge attributes such as weights

denoting the strength of connection between associated vertices (weighted graph)

or type of connections (a well-known instance is a knowledge graph [20]). A

special generalization of the simple graph is heterogeneous graph [144] which

allows vertices to be heterogeneous. In other words, a heterogeneous graph

explicitly represents different types of entities (e.g., users and products) via

different types of vertices rather than encode entity types as vertex attributes.

Different formats of graph contain different information. Although more complex

graph contains more information, it also costs more storage and computation

resources in practical applications. As such, suitable graph should be selected

according to the requirement of an application. In Table 2.1, we summarize the
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Table 2.1: Basic properties of different categories of graphs.

Graphs Direction Order
Vertex

Attributes
Edge

Attributes
Instance

Simple Graph D/U Pairwise N N World Wide Web

Hypergraph U Higher Order N N
Modulate

Reaction Graph
Attributed Graph D/U Pairwise Y Y/N Citation Graph
Edge-attributed

Graph
D/U Pairwise Y/N Y

Knowledge
Graph

Heterogeneous
Graph

D/U Pairwise Y/N Y/N
Bibliographic

Graph

D and U means directed and undirected respectively. Y (yes) and N (no) indicates whether the
corresponding graph contains vertex/edge attributes. For instance, World Wide Web is a simple graph
of webpages connected by hyperlinks; modulate reaction graph is a hypergraph of modulates where
hyperedges connect a set of modulates in a chemical formula. In the citation graph, vertices and edges
are articles and references respectively. A knowledge graph consists of entities like earth and sun as
well as edges representing the relations between entities in the real-world. In the bibliographic graph,
the heterogeneous vertices include authors, articles, affiliations, topics, etc..

properties of the aforementioned graphs to compare their differences. Among

this graphs, attributed graph is the most widely used one in both practical

applications and graph-based learning study [34, 67, 182, 192, 186]. In the

following, if not otherwise specified, we refer to graphs as attributed graphs,

i.e., each vertex is associated with a feature vector. While designing new graphs

with better representation ability is still remarkably attractive, this thesis focuses

on learning methods on graphs.

2.2 Learning on Graphs

In recent decades, attention on analyzing graphs mainly focuses on three tasks:

• Vertex prediction [89, 49, 48]: As aforementioned, the target of vertex

prediction is to predict the of interest attribute of vertices in a given graph.

• Link prediction [71, 17, 177]: Instead of focusing on vertex, link prediction

aims to infer whether there would be an edge between a pair of vertices.

• Clustering [38, 29, 163]: The target of clustering is to identify group of

vertices with similar property.

Among the three tasks, vertex prediction has been attracting the most attention

on account of its wide range of applications, which is the focus of this thesis.
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In the last decade, a surge of graph-based learning methods have been proposed

to solve the vertex prediction task. Technically, the existing approaches fall into

two main categories: graph Laplacian regularization and graph representation

learning. Traditional approaches including label propagation [195] and graph

spectral methods [189] rely mainly on graph Laplacian regularization which

implements the assumption via encouraging closely connected vertices to be

predicted with similar labels. More recently, there has been a surge of

representation learning approaches that encode graph structure by mapping

vertices as points in a low-dimensional embedding space. Generally, the

representation learning approaches achieve local smoothness assumption by

forcing the connected vertices to be geometrically close with a variety of

techniques including skip-gram [127, 147, 63, 176] and graph convolution [37,

89, 154].

2.3 Graph Laplacian Regularization

The general problem setting of vertex prediction is to learn a prediction function

ŷ = f(x), which maps a vertex from the feature space to the target label

space [176]. Existing approaches under the graph Laplacian category usually

solve the problem by minimizing an objective function abstracted as [189]:

Γ = Ω + λΦ, (2.1)

where Ω =
∑N

i=1 l(f(xi),yi) is a task-specific loss that measures the error

between prediction ŷ and ground-truth y. With categorical labels, l would be

a classification loss such as cross-entropy loss and hinge loss. With numerical

targets, a well-known instance of l could be mean square loss. Φ is a graph

Laplacian regularization term implementing the local smoothness assumption

and λ is a hyperparameter to balance the two terms. Formally, Φ is defined as:

Φ =
N∑
i=1

N∑
j=1

Aij︸︷︷︸
strength of smoothness

∥∥∥∥∥f(xi)√
Dii
−
f(xj)√
Djj

∥∥∥∥∥
2

︸ ︷︷ ︸
smoothness

, (2.2)
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where Aij could be either the similarity score between a pair of vertices (weighted

graph) or a binary value denoting whether vertices i and j are connected (simple

graph); Dii =
∑N

j=1 Aij is the degree of vertex i [189]. The regularization term

operates smoothness on each pair of entities, enforcing their predictions (after

normalized by their degrees 1√
Dii

) to be close to each other. The strength of

smoothness is determined by the similarity or connectedness Aij . In other words,

it encourages similar nodes or connected nodes to be predicted with similar

predictions. It can be equivalently written in a more concise matrix form:

G = trace(ŶLŶT ), (2.3)

where Ŷ = [ŷ1, ŷ2, · · · , ŷN], L is defined as L = D−1/2(D − A)D−1/2, also

known as the graph Laplacian matrix.

With the aforementioned formulation, research on graph Laplacian methods has

been mainly focusing on: definition of prediction function (f) and calculation of

Laplacian matrix (L).

• Various prediction functions have been proposed. Approaches like label

propagation [195, 196], learning with local and global consistency [189] and

Modified Adsorption [146], define f as a label lookup table for unlabeled

instances in the graph. That is to say, the prediction function is non-

parameterized, making predictions purely from graph structure without

consideration of vertex features. In particular, label propagation [195, 196]

forces f to agree with labeled instances. Other approaches [189, 146] allow

the prediction on labeled instances to vary and incorporate vertex uncertainty.

To account for vertex features, manifold regularization [14] parameterizes f in

the Reproducing Kernel Hilbert Space (RKHS).

• An alternative line of research is to explore the calculation of Laplacian

matrix, mainly focusing on the measure of vertex similarity (i.e., definition

of Aij). By comparing neighbors of a vertex pair, Jaccard similarity and its

variations are first proposed to measure vertex similarity [121, 131, 57, 95].

Generally speaking, vertices with more common neighbors would obtain higher

Jaccard similarity. Besides one-hop neighbors, vertex graph kernel measures
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incorporate multi-hop neighbors by considering the paths connecting the

vertex pair [22, 5, 99]. In addition, Zhou et al. [190] extended the philosophy

of Laplacian into hypergraph by defining Aij as the number of hyperedges

connecting vertices i and j.

Approaches based on graph Laplacian regularization have been applied on a

wide range of applications and achieved significant success. However, inspired

by the extraordinary representation ability of deep neural networks and their

remarkable success in solving standard learning problems, the community has

shifted the focus on deep graph-based learning where the graph Laplacian (a.k.a.

Laplacian eigenmaps) techniques typically play auxiliary roles. For instance,

some deep graph-based learning approaches use graph Laplacian regularization

to enforce first-order similarity [13, 168]. Moreover, vertex graph kernels are

applied to extract vertex features so as to encode higher-order similarity [27, 123].

2.4 Graph Representation Learning

Representation learning, especially the approaches based on deep neural

networks owing to their extraordinary ability of non-linear modeling, has

achieved success in various tasks [109, 75, 67]. The target of representation

learning is to map the entities from either the feature space or IDs to points

in a low-dimensional embedding space, i.e., learning a low dimensional vector

representation for each entity [75]. In graph representation learning (a.k.a.

network embedding), the additional target is on preserving the graph structure

in the embedding space [67]. In other words, the graph representation learning

methods implement the local smoothness by forcing closely connected vertices

to be geometrically close with a variety of techniques: 1) matrix factorization,

2) skip-gram, 3) autoencoder, and 4) graph convolution.

2.4.1 Matrix Factorization

Early methods for graph representation learning are largely based on matrix-

factorization [13, 91], which learns vertex embeddings by factorizing a matrix Â

corresponding to graph structure. The existing approaches typically solve the
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problem by minimizing an objective function abstracted as:

Γ =
∑

(i,j)∈D

‖g(zi, zj)− Âij‖22, (2.4)

where g is a function to estimate the “similarity” of vertices i and j, zi and zj

are the learned vertex embeddings. By minimizing the objective function, the

embeddings of similar vertices are encouraged to be close. Note that D does not

contain all vertex pairs since Â is highly sparse and would bias the embeddings

to be zeros if optimized on the whole vertex pair set.

Various methods define different functions of g and the calculations of Âij

as variants of Equation (2.4). There is a large number of recent embedding

methodologies [4, 27, 123] implemented as inner-product:

g(zi, zj) = zTi zj , (2.5)

and they differ primarily in the calculation of Âij . For example, the Graph

Factorization algorithm defines Âij directly based on the adjacency matrix (i.e.,

Âij = Aij) [4]; GraRep considers various powers of the adjacency matrix (e.g.,

Âij = A2
ij) in order to capture higher-order vertex similarity [27]; and HOPE

supports general similarity measures and vertex graph kernels (e.g., Jaccard

similarity) [123]. While these different similarity definitions exploit the trade-

off between modeling “first-order similarity” and “higher-order similarity”, their

similarities are highly correlated to the local structure of the graph, making them

appropriate for modeling local smoothness.

Another line of research encourages the similarity with the idea of Laplacian

regularization (a.k.a. Laplacian eigenmaps technique) [13, 168]. Similar as

Equation (2.2), the objective function is defined as:

Γ =
∑

(i,j)∈D

Âij · ‖zi − zj‖22. (2.6)
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2.4.2 Skip-gram

Inspired by the skip-gram model [109], which is proposed to learn word

embeddings from large-scale documents, many recent methods learn the vertex

embeddings based on a large scale of vertex sequences generated by random

walk. The key idea behind this approach is to encourage vertices co-occurring in

short random walk sequences to have similar embeddings. Most of the existing

methodologies in this line implement the idea by optimizing a classifier in which

the aim is to predict the co-occurring vertex (positive/target vertex) of a given

vertex (context vertex). Note that the skip-gram methods indirectly implement

the local smoothness assumption since local vertices tend to co-occur in random

walk sequences with higher probability and their embeddings are forced to be

correlated by the classifier. DeepWalk [127] and node2vec [63] are the prior

works of skip-gram methods.

To train the classifier efficiently, “negative sampling” is widely used during

the training phase, which pairs negative vertices for a context vertex. As the

learned embedding is highly sensitive to the sampling strategy, a line of work

has been focusing on exploring new sampling techniques. In particular, recent

work [19] uses vertex-anchored sampling as an alternative of the random sampler

in vertex2vec, which incorporates the connectedness to the context vertex during

the sampling. More recently, dynamic negative sampling scheme is adopted,

which adaptively selects “hard” negative samples (i.e., similar to the context

vertex) to boost the training process [177, 23].

2.4.3 Autoencoder

Inspired by the success of Autoencoder (AE) in learning embedding of

given entities from original features, various works use AE to learn vertex

embedding [148, 157, 88]. By optimizing a re-construction error, the AE forces

vertices with similar features to be close in the embedding space. Considering

that the locally connected vertices tend to have similar features regarding graph

structure, the Autoencoder-based representation learning approaches actually

also implements the local smoothness assumption.

Sparse Autoencoder (SAE) [148] is the first work in this line of research, which
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takes each column of the adjacency matrix as vertex features. As vertices sharing

more common neighbors tends to have similar vertex features, the embeddings

learned by SAE mainly reserves the second-order similarity of vertices. Structure

Deep Network Embedding SDNE [157] enhances SAE by incorporating the

first-order similarity with the Laplacian eigenmaps technique. Furthermore,

DNGR [28] encodes higher-order similarity via employing the positive pointwise

mutual information between vertices as the features. As a natural extension of

AE, recently, Variational Autoencoder (VAE) has also been introduced to learn

vertex embeddings [88, 194], leading to more robust embeddings owing to the

inherent generation model in VAE.

2.4.4 Graph Convolution

Convolution is a mathematical operation on two functions (e.g., input features

and a parameterized filter) to produce a third function that expresses how

the shape of one is modified by the other. In computer vision, convolution

neural networks have been proven to be remarkably effective to capture the local

patterns in small windows. Inspired by the success, there has been attention on

extending convolution to the non-Euclidean grid data, especially graphs. A line

of research defines graph convolution as the propagation of vertex embeddings

over the graph structure, which can be abstracted as:

Ho = σ(ÂHinW), (2.7)

where σ is a non-linear activation function such as the sigmoid function. Hin ∈

RN×D is the input of the convolution layer which could be either the vertex

features or the output of a previous convolution layer. W is the parameters of

the convolution, modeling the interactions between different dimensions of the

input. Â is the matrix representing vertex similarities where a non-zero entry

Âij means a propagation from j to i.

Various approaches define different Â as specific variants of graph convolution.

In particular, GCN [89] and GraphSAGE [66] defines Â as the normalized

adjacency matrix with self-connections, emphasizing first-order similarity.

Similarly, GAT [154] considers first-order similarity by modeling the similarity
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with a multi-head attention model. To encode higher-order similarity,

ChebNet [37] and DCNN adopts k-th power of the adjacency matrix and a

diffusion matrix denoting the transition probability of a length k diffusion

process, respectively. Note that the existing methods largely propagate the

embedding between connected vertices, affecting their embeddings to be similar

and this implicitly implementing the local smoothness assumption.

2.5 Discussion

It is clear that graph-based learning has made noticeable progress in recent

years. However, most of the existing methods focus on the simplest problem

setting where vertices are connected with a homogeneous relation and associated

with static features. That is to say the existing approaches mainly leverage the

connection between vertices and ignore the other information in graph data and

graph applications. While most of the graph-based learning applications can be

simplified to this general setting, we argue that the existing approaches can be

suboptimal for the applications with more complex inputs. In particular, such

general solutions lack the ability to handle the more complex cases with multiple

relations, dynamic vertex features, the need to incorporate domain knowledge

and learning with adversarial perturbations, as discussed in the introduction. In

this thesis, we will explore graph-based learning methods that can handle these

complex cases.
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Chapter 3

Multi-relation (channel)

Learning towards Social

Indicator Computation

In this chapter, we introduce a new graph-based learning framework that

incorporates multiple types of entity relations into the modeling of local

smoothness over graph. We demonstrate the framework with a social indicator

computation application, university ranking. The target of university ranking

is to learn a ranking list of the universities in an unsupervised manner by

judging the quality of universities. The key of unsupervised university ranking is

adjusting the relative rank of universities from a historical ranking list according

to university similarities. Between universities, we have similarity relations from

different perspectives, which are calculated with data from different channels,

e.g., official, academic, and social channels.

3.1 Introduction

Social indicators are defined as statistical measures and analytics that describe

social trends and conditions that would impact social well-being [51]. A social

indicator is usually in the form of a ranking list that orders the entities

17



of interests according to some pre-defined rules. In the past few decades,

several professional organizations, such as mass media, academic institutes,

and government agencies, have calculated and released a wide variety of social

indicators on different facets of our society, including cost of living [24], health

expenditure [56], happiness index [153], and university quality [86]. Generally,

social indicators have some key functions, spanning from providing information

for decision-makers, monitoring and evaluating policies, to searching for a

common good [8]. For instance, university ranking plays a pivotal role in

assessing the quality of universities to help government in evaluating education

and research policies, and potential students in selecting universities. Therefore,

the accuracy and timely creation of these indicators are extremely useful to a

wide variety of users and applications, including the formulation of government

policies and planning of social services.

Most of the released social indicators are typically computed in two steps: given

a set of entities to be ranked, they first calculate the scores of these entities

according to several factors related to the desired social indicator and then

fuse the scores using hand-crafted weights to rank the entities. Typically, such

computation process suffers from the following problems: 1) Labor-intensive data

collection. Data used to calculate social indicators usually rely heavily on user

studies like questionnaire, especially, for subjective factors, such as the academic

and employment reputation in the QS Ranking. It thus requires a lot of human

resources and the collected data can hardly be applied to compute other social

indicators. 2) Data insufficiency. Existing social indicators usually only cover

a small fraction of target entities. For example, there are 2,553 universities in

China1, while most university rankings involve only less than 800 universities.

This is because it is non-trivial to carry out a large-scale user study to gather

comprehensive information for each target entity. And 3) expert-relied data

fusion. Factor weighting policies rely heavily on experts and different weighting

policies may lead to distinct social indicator results. Although we believe that

we can find outstanding experts and generate reasonable social indicators, the

process is extremely resource-consuming.

With the fast development of Internet, we are able to collect large-scale

1http://tinyurl.com/zcbumn3/.
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and multi-facet data to describe almost any given entities from the Web,

such as interactions and opinions shared in social networking services (SNSs),

timely news reports in online mass media, and purchase history in e-commerce

platforms. In a sense, the publicly accessible online data enable us to alleviate

the aforementioned data collection bottleneck and the data scarcity problems,

thus saving human labors. Considering the university ranking as an example,

rich data from multiple channels can be gathered to comprehensively describe

each university: 1) official statistics about students and teachers are available

in platforms of the Ministry of Education (MOE) and various educational

organizations; 2) important events related to universities are updated on the

website of mass media in real time; 3) academic records are accessible through

online bibliographic database like Microsoft Academic2; 4) employment status of

graduate students are shared in business and employment-oriented SNSs, such as

LinkedIn3; and 5) university-related comments and opinions from general users

are shared in the mainstream social media like Twitter4.

In this work, we propose to calculate social indicators in a data-driven manner

by solving it as an unsupervised ranking task [2]. The target is to learn a

model that adjusts the ranking score of the entities from a historical ranking

by inferring their similarity relationships [193, 31, 26]. For instance, the model

would ranks a pair of entities closer as compared to the historical ranking, if their

similarity becomes high. In particular, we first collect multi-channel Web data

corresponding to the given social indicator and extract a set of features from

each channel to represent the candidates. For each channel, we construct graphs

from its features to represent the similarities from the associated perspective,

respectively. Note that graphs from different channels represent different types

of similarity relations. With graph representations of the entities, graph-based

learning methods [193, 31, 26] are the promising solutions for social indicator

computation—predicting a ranking score for each vertex.

Empirical study [26, 47, 55] shows that properly fusing similarity relations in

different types (from different channels) would be the key to success of such

graph-based learning methods. Roughly, the existing methods fall into the

2https://academic.microsoft.com/.
3https://www.linkedin.com/.
4https://twitter.com/.
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following two categories: 1) early fusion [26], which aggregates graphs from

different channels into a general one before feeding it into graph-based learning

models; 2) late fusion [47], which separately learns a ranking list from each

channel and then aggregates them into a general one. Early fusion and late fusion

are suitable for different scenarios. For instance, early fusion might perform well

for graphs with noisy edges, which highlights the consistent parts across graphs

to eliminate noises. On the contrary, late fusion might work well for graphs

with complement structures. As such, neither early fusion nor late fusion would

generate optimal results for social indicator computation because of: 1) Data

heterogeneity. Data from different channels have different quality. For instance,

an official channel might have less noise than a general user channel. 2) Complex

channel relations. The correlation may be strong among some channels, while it

may be very weak among others. Therefore, it will cause information loss if all

channels are equivalently treated.

To leverage the advantages of both early fusion and late fusion, we propose

a middle fusion method to aggregate the graphs in a type-aware manner. In

particular, we cluster all the graphs with different types of similarity relations

into groups based on the their correlations. With clustering, the involved graphs

in each cluster are strongly correlated. In the light of this, we derive a common

graph for each cluster and perform a graph-based ranking upon this common

graph. We then fuse ranking results learned from different clusters to produce the

final score. We apply the proposed graph-based multi-channel ranking scheme

(GMR) to address the Chinese university ranking problem, as shown in Figure

3.1. In particular, this scheme first collects multi-channel Web data, ranging

from official data, mass media reports, academic records, employment status of

graduate students, to public comments. It then extracts a rich set of features

from each channel to comprehensively represent the universities and then feeds

the features into the model of GMR to generate the university ranking. Extensive

experiments validate the effectiveness of the proposed middle fusion and the

usability of the proposed GMR scheme.

The main contributions of this work are: 1) We present a novel graph-

based multi-channel ranking scheme towards social indicator computation.

It inherits the advantages of both early fusion and late fusion. 2) We
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Figure 3.1: Schematic illustration of social indicator computing and a
case study of Chinese university ranking.

successfully take the Chinese university ranking as a case study of social

indicator computation. Experimental results validate the effectiveness of the

proposed method (codes and our constructed data can be accessed through:

https://github.com/hennande/cur/.

3.2 Related Work

Our work is related to recent studies on multi-view subspace learning,

unsupervised ranking, and university ranking.

3.2.1 Multi-view Subspace learning

Subspace learning is a widely explored technique to analyze multi-view data.

It aims to obtain compact latent representations by leveraging underlying

structures and relations across multiple views. Typically, multiple views are

mapped into a common space by different algorithms, including canonical

correlation analysis [53], dictionary learning [10], matrix factorization [173, 105,

74], and joint learning [164]. In addition, the latent representations are further

regularized to be sparse with different norms [138]. Apart from the shallow

learning methods, subspace learning is also explored with deep learning models,

such as deep restricted Boltzmann machines [117], deep feedforward networks

[7, 183], and deep autoencoders [162]. In summary, although great success

has been achieved by these models, few of them simultaneously consider the

difference between unstructured and semi-structured data, let alone block-wise
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missing data.

3.2.2 Unsupervised Ranking

Unsupervised ranking is a popular technique to produce permutation of entities

without labled data. Studies on unsupervised ranking are roughly separated

into two categories based on whether the entities have direct linkages: 1)

Linkage-based ranking. These methods infer rank of entities from the link

structure information. For example, PageRank [124] and HITS [90] estimate the

importance of webpages from the hyperlinks jumping to the given page. Standing

on the shoulder of them, a couple of improvements have been presented. For

instance, PopRank [120] further handles Web spam and heterogeneous graphs.

BrowseRank [103] integrates the metadata of user behaviors. BiRank [72]

expanded it to the bipartite graph. 2) Similarity-based ranking. Similarity-based

ranking algorithms enforce that similar entities obtain close ranks. For example,

Agarwal [2] constructed a graph, where vertices and edges respectively represent

entities and similarity between them, and derived rankings from the Laplacian

of the graph. Zhou et al. [193] replaced the conventional graph Laplacian with

an iterated and unnormalized one to improve the robustness. Cheng et al. [31]

further considered the entity redundancy with sink points in the Laplacian. In

addition, Bu et al. [26] utilized the hypergraph instead of the simple one to

represent the entities. Yet, most of the aforementioned methods are designed to

process single view data.

3.2.3 University Ranking

Traditional university rankings, such as the U.S.News & World Report5, Times

Higher Education6, and QS7, usually measure the qualities of universities with a

few pre-defined factors, such as the research reputation and academic reputation.

These factors are then fused with human designated weights to obtain the

final ranking scores. In China, several university rankings are calculated in

a similar process by distinct organizations like the Chinese Universities Alumni

5http://www.usnews.com/rankings.
6https://www.timeshighereducation.com/.
7http://www.qs.com/.
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Association (CUAA)8, Research Center for China Science Evaluation (RCCSE)9,

and Chinese Academy of Management Science (CAMS)10. It is clear that the

performance of these ranking systems highly depends on these pre-defined factors

and their heuristic weights.

Instead of heuristic weights, some researchers attempted to fuse factors with

statistical methods. Guarino et al. [64] applied the Bayesian latent variable

analysis to learn the weights. Dobrota et al. [45] used I-distance values to

estimate the weights based on data from previous years. In addition, some

attempts have been done to rank universities with new factors. Lages et al. [94]

ranked universities by the importance of their corresponding Wikipedia pages.

Kapur et al. [86] utilized LinkedIn Economic Graph data to rank universities by

employment of graduates. To sum up, these aforementioned ranking methods

pay more attention to weight tuning or specific factors. With the multi-channel

Web data, our ranking method explores multi-facets of universities and thus is

able to rank the universities in a more comprehensive manner.

3.3 Methodology

The social indicator computation is formalized as: given a list of N entities, a

historical ranking list of all the entities y ∈ RN , and the latest entity descriptions

from M channels, {[Xs1 ,Xu1 ], [Xs2 ,Xu2 ], · · · , [XsM ,XuM ]}, the social indicator

computation aims to learn a new ranking list f ∈ RN by harvesting the current

data and the historical ranking list. Xsm ∈ RN×Dsm
and Xum ∈ RN×Dum

are

the features extracted from the semi-structured and unstructured data from the

m-th channel; and y refers to the latest released social indicator by the various

professional organizations. For example, if the desired social indicator is Chinese

university ranking in 2017, y will be the ranking results in 2016.

We present a novel graph-based multi-channel ranking framework to compute

social indicators: 1) We first construct a simple graph on the semi-structured

data and a hypergraph on the unstructured data for each channel. 2) We then

8http://www.cuaa.net/cur/.
9http://www.nseac.com/html/168/.
10http://edu.sina.com.cn/gaokao/wushulian/.
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cluster all the graphs into groups based on the correlations of their Laplacian

matrices. 3) We ultimately learn a cluster-wise ranking list and fuse them

together within a tailored objective function.

3.3.1 Graph Construction

In some channels, there indeed exist both semi-structured and unstructured data

to describe the given entities. Semi-structured ones are of higher quality and thus

more discriminative. On the contrary, the unstructured data are more noisy.

Due to their distinct structures and features, we leverage two types of graph,

simple graph and hypergraph, to represent the entities and their relations. The

simple graph is sensitive to the noise in data; whereas the hypergraph is typically

more robust but less discriminative than the simple one [53]. Thus, instead of

naively merging the semi-structured and unstructured data, for each channel,

we construct a simple graph over the semi-structured data and a hypergraph

over the unstructured ones so that we neither sacrifice the discrimination of

semi-structured data nor be affected by the noisy unstructured ones.

Simple Graph Construction. In a simple graph, vertices represent entities

and edges refer to their pairwise relations. A simple graph with N vertices is

represented by an incidence matrix, W ∈ RN×N , where Wij is the weight of

an edge linking the i-th and j-th vertices. The vertex degree is denoted by a

diagonal matrix, D ∈ RN×N , where Dii =
∑N

j=1Wij is the degree of the i-th

vertex. Given Xsm , W is estimated as,

Wij =


exp(−‖xsm

i − xsm
j ‖

2/2σ2), if i 6= j,

0, otherwise,

(3.1)

where the radius parameter σ is simply set as the median of the Euclidean

distances of all pairs. Following [2], we normalize graph Laplacian matrix as,

Lsm = D−1/2(D−W)D−1/2. (3.2)

Hypergraph Construction. Generalized from a simple graph where an edge

links pairwise vertices, an edge in a hypergraph connects a set of vertices to

represent the finitary relations. The incidence matrix of a hypergraph with
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N vertices and P edges is H ∈ RN×P , where Hij = 1 if the i-th vertex is

connected by the j-th edge, otherwise Hij = 0. The degree and weight of edges

are respectively represented with two diagonal matrices, E and W ∈ RP×P ,

where Ejj =
∑N

i=1Hij . The vertex degree is represented by another diagonal

matrix, V ∈ RN×N , where Vii =
∑P

j=1WjjHij . Following [26], given Xum , we

calculate the hypergraph Laplacian matrix with,

Lum = Dv−1/2(Dv −HWDe−1HT )Dv−1/2. (3.3)

In particular, the j-th edge connects the k-most similar vertices to the j-th

vertex, Nj(xum
j ). The weight of the j-th edge is estimated by,

Wjj =
∑

xum
i ∈Nj(xum

j )

exp(−‖xum
i − xum

j ‖
2/2σ2). (3.4)

3.3.2 Middle Fusion

After graph construction, the original multi-channel descriptions {[Xs1 ,Xu1 ],

[Xs2 ,Xu2 ], · · · , [XsM ,XuM ]} are mapped to the Laplacian representations

{[Ls1 ,Lu1 ], [Ls2 ,Lu2 ], · · · , [LsM ,LuM ]}. Instead of fusing the graphs from

different channels in either early fusion or late fusion, we propose to make a

tradeoff between early and late fusion, named middle fusion. Middle fusion

aims to leverage the advantages of both early and late fusion to handle the data

heterogeneity and complex channel relations in social indicator computation.

Towards this end, we first divide all the graphs into groups based on the

correlations between their Laplacian matrices using spectral clustering [158].

During the clustering, the distance between two Laplacian matrices is estimated

by Hilbert-Schmidt Independence Criterion (HSIC) [62],

dis(Li,Lj) = HSIC(Li,Lj, φ, ϕ) = (N − 1)2/tr(PHQH), (3.5)
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where φ and ϕ are the kernel functions of the i-th and j-th matrices; P, Q, and

H ∈ RN×N . P and Q are the Gram matrices with,


Pmn = φ(lim, l

i
n),

Qmn = ϕ(ljm, l
j
n).

(3.6)

H = I − N−2I1 centers the Gram matrix to have zero mean, where I and I1

respectively denote identity and all-one matrices.

3.3.3 Objective Function

Given the historical ranking list y and the clustered Laplacian matrices in K

groups, {{L11 , · · · ,L1S1}, · · · , {LK1 , · · · ,LK
SK}}, where Sk denotes the number

of matrices in the k-th cluster. The desired ranking list f is learned via the

following function:

Γ = min
L̂k,f ,fk

1

2

K∑
k=1

lintra(L̂
k, {Lk1 , · · · ,Lk

Sk})+

λ1

2

K∑
k=1

lman(L̂k, fk) +
λ2

2
linter(f ,y, {f1, · · · , fk}), (3.7)

where lintra, lman, and linter respectively denotes the loss of: 1) intra-group

fusion, 2) manifold ranking, and 3) inter-group fusion. The intra-group fusion

aims to learn a common Laplacian matrix L̂k ∈ RN×N to fuse the Laplacian

matrices {Lk1 , · · · ,Lk
Sk} in the k-th group. Based upon the k-th common

Laplacian matrix, the manifold ranking learns a ranking list fk ∈ RN . Inter-

group fusion combines rankings from different groups into the final ranking f .

f is further regularized by the historical ranking result y so that it satisfies the

ranking smoothness. λ1 and λ2 balance the three terms.

Intra-group Fusion. The intra-group fusion is an early fusion, which leans a

common Laplacian matrix L̂k to fuse the Laplacian matrices in the k-th group

{Lk1 , · · · ,Lk
Sk} by minimizing lintra,

1

2

Sk∑
i=1

tr
(

(L̂k − Lki)TSki(L̂k − Lki)
)
. (3.8)
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Thereinto, Ski ∈ RN×N is a diagonal matrix with,

Skijj =


0, if the j-th entity misses the i-th channel,

1, otherwise.

(3.9)

It is a selector to avoid the biases in the common Laplacian caused by missing

data. Figure 3.2 presents a toy example with two graphs to illustrate the effects

of the selector. In the example, data of the n-th entity in the k1-th graph

are missing. Thus, Sk1 and Sk2 are set as I ∈ RN×N except Sk1nn = 0. So

entries related to the n-th entity in the common Laplacian learned by the intra-

group fusion are the same as those in Lk2 . However, those entries could be bias

towards zero if there is no selectors in the intra-group fusion. This is why we

claim by integrating selectors, our intra-group fusion alleviates the impacts of

data missing.
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Figure 3.2: A toy example to illustrate the impact of missing data. Lk

and Lk′ are the common Laplacian learned by the intra-group fusion
with and without selectors, respectively.

Graph-based Ranking. Given a common Laplacian matrix L̂k, manifold

ranking learns a ranking list fk, where similar entities obtain close ranks, via,

min
fk

lman(L̂k, fk) = fk
T
L̂kfk, (3.10)

where Wij denotes the similarity between the i-th and j-th entities; Dii and Djj

are the degree of the vertices representing the i-th and j-th entities.

Inter-group Fusion. As aforementioned, different local ranking lists are

learned from different clusters, i.e., we have {f1, f2, · · · , fK}. The inter-group

fusion is a late fusion, which learns a set of weights b = [b1, b2, · · · , bK ] ∈ RK

to get the desired ranking f =
∑K

k=1 bkf
k and regulates the fused ranking to be
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smooth with the historical one by minimizing linter,

(
K∑
k=1

bkf
k − y)TC(

K∑
k=1

bkf
k − y), s.t.

K∑
k=1

bk = 1, (3.11)

where C ∈ RN×N is diagonal matrix with Cjj = cj . cj is the pre-calculated

weight of the j-th entity controlling the entity-aware ranking smoothness.

Specifically, cj should be set according to the confidence on its historical ranking

yj (detailed in Section 3.5.1).

3.3.4 Optimization

We adopt the alternating strategy to optimize the proposed model, until it

converges.

Computing L̂k. To ease the optimization of L̂k, we set each common Laplacian

as,

L̂k =

Sk∑
i=1

akiL
ki , s.t.

Sk∑
i=1

aki = 1, (3.12)

and optimize each L̂k independently keeping f and b fixed. After removing the

fixed parts and substituting the constraint
∑Sk

i=1 ai = 1 with Lagrange multipier

δ, the objective function is rewritten as,

min
ak

1

2

Sk∑
i=1

tr

(

Sk∑
j=1

akjL
kj − Lki)TSki(

Sk∑
j=1

akjL
kj − Lki)

+

λ1

2
fk
T

Sk∑
i=1

akiL
kifk + δ(1− eTak), (3.13)

where e = [1, 1, · · · , 1]T ∈ RSk
. We then take the derivative of Equation (3.13)

regarding ak
i , as follows,

Sk∑
j=1

(akjS
k − 1)tr

(
LkiSkiLkj

)
+
λ1

2
fk
T
Lkifk − δ. (3.14)

Setting it to zero and rearranging the terms, all aki ’s and δ can be learned by
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Table 3.1: Statistics of the collected multi-channel data.
Channels Sources #Universities #Items Duration

Official
Channel

MOE 743 96,551 13.06-15.06
Sina Weibo 721 10,912,234 15.01-16.05

Mass Media
Channel

Baidu News 743 508,851 15.01-16.05

Academic
Channel

Microsoft
Academic

456 1,211,102 11.01-16.03

Employment
Channel

LinkedIn 411 411 -
iPIN 722 722 -

General User
Channel

Sina Weibo 573 2,025,777 15.01-16.05

solving the following linear system,

Mâk = u, (3.15)

where âk = [ak1, a
k
2, · · · , akSk , δ]

T ∈ RSk+1, u = [u1, u2, · · · , uSk , 1]T ∈ RSk+1, and

M ∈ R(Sk+1)×(Sk+1). Mij and ui are defined as follows,



Mij = Sktr
(
LkiSkiLkj

)
, i, j 6= Sk + 1,

Mii = 0, i = Sk + 1,

Mij = 1, otherwise,

ui =
Sk∑
j=1

tr
(
LkiSkiLkj

)
− λ1

2 fk
T
Lkifk.

(3.16)

Following a similar strategy, we compute f and b.

3.4 Chinese University Ranking

In this work, we take the Chinese university ranking as a case study of social

indicator computation.

3.4.1 Data Collection

For each university, we collect five channel data from the Web. They are the

official data, mass media data, academic records, employment data of graduate

students, and public comments. In Table 3.1, we summarize the statistics of the

collected data. In particular,
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Official Channel. Official channel contains the primary information of the

universities, such as student quality, official activities, and development plans,

which plays a pivotal role in inferring university quality. Data in official channel

are usually released by government agencies and university themselves. They

includes: 1) MOE11. From the platform of MOE, we collect university profiles,

such as location and category. Besides, we gather the enrollment scores of

universities from 2013-201512. As higher enrollment scores reflect the quality

of the universities and potential of the students. And 2) Sina Weibo13. Sina

Weibo is one of the most popular SNSs in China. Most Chinese universities

publicize their official activities and announcements through their official Sina

Weibo accounts. We thus crawl the historical posts from such accounts.

Mass Media Channel. Mass media channel contains insights of mass media

which uncovers the hot topics, events, discoveries, and even criticisms related

to universities. News reports from mass media are usually formalized by

professional journalists with incisiveness of arguments, and hence their opinions

are objective. To take full advantage of such opinions, we collect news reports

mentioned the universities of interest from Baidu News14.

Academic Channel. This channel contains academic records of universities

showing the academic contribution and influences of universities. Such records

are available from online bibliographic databases such as Google Scholar. In this

work, given a university, we collect papers whose authors’ affiliation is the given

university. Meanwhile, we gather the papers’ citations from Microsoft Academic.

Employment Channel. Employment channel contains employment status

of universities’ graduate students. This is one of the key factors related to

university quality, because most students pursue higher education for better

employment. The employment data are accessible through employment-oriented

SNSs and third party data analysis companies. They include: 1) iPIN. We collect

11http://gaokao.chsi.com.cn/.
12In China, final year high school students first take part in the National College Entrance

Examination (NCEE). They then apply for universities based on their NCEE scores.
Regarding applications from students, the university selects students by their scores from
high to low. The lowest score of the selected students is released as the enrollment score of
the university.

13weibo.com/.
14news.baidu.com/.
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employment data of universities’ graduate students from the homepage in iPIN15,

a data analysis company in China. iPin provides average salary, working location

distribution, and male-female ratio information of graduate students. And 2)

LinkedIn, from which we collect university homepages.

General User Channel. General user channel contains public impressions,

attitudes, and sentiment polarities of universities shared in SNSs posts, signaling

the reputation of universities. We hence collect posts mentioning the given

university from Sina Weibo.

Historical Ranking Result. The historical ranking result y is estimated

from the three most popular Chinese university rankings: CUAA, RCCSE, and

CAMS (Wu Shulian). To generate a relatively objective historical ranking list,

ranking results in 2015 of these three traditional rankings are averagely fused.

It is worthwhile to highlight that the historical ranking results in future can

be obtained from our previous release rather than the results of the traditional

rankings.

3.4.2 Feature Extraction

Regarding the collected multi-channel data, we extract three types of features

to describe each university: 1) Sentiment features. We notice that data in mass

media and general user channels convey the attitude and sentiment of users.

We thus utilize the Chinese microblog sentiment analysis tool [83] to judge the

polarity of contents from the mass media and general user channels. For each

given input, this tool generates a three dimension distribution to denote its

probability to be negative, neutral, and positive. 2) Topic features. According

to our observation, contents in the official, mass media, or general users about

similar universities are likely to express similar topics. For instance, reports

from mass media may have a higher probability to report the topics of “research

achievements” and “technologies” for top universities. Inspired by this, we

explore the topic distributions over official, mass media, and general user channel.

In particular, we generate topic distributions using Latent Dirichlet Allocation

[18], which has been widely used in topic modeling. And 3) Statistic features.

15www.ipin.com/.
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Table 3.2: Features extracted from the multi-channel data.
Channels Semi-structured Data Dimension Unstructured Data Dimension

Official
Channel

NCEE enrollment line, category, is 985, is 211, key subjects count, city,
fans count, followers count, posts count, comments count, likes count, etc.

78 topics 56

Mass Media
Channel

monthly reports count 16
topics,

sentiment
95

Academic
Channel

papers count, first author papers count, cooperated papers count,
authors count, citations count, citations author, citations paper

13 - 0

Employment
Channel

average sallary, average sallary top5 subjects,
working city, male female ratio, similar universities

443 - 0

General User
Channel

posts count, reposted count, likes count, comments count, 4
topics,

sentiment
81

Quality of universities are directly reflected by the volume of statistics, for

instance, the average salary of graduate students, the number of publications,

and the NCEE enrollment scores. Together with the sentiment and topic

features, the statistical features are summarized in Table 3.2.

3.5 Experiment

3.5.1 Experimental Settings

Entity-aware Ranking Smoothness. As our historical ranking y is estimated

from CUAA, RCCSE, and CAMS, the ranking smoothness weight of the i-th

univeristy Cii in Equation (3.7) is assigned as the ratio of rankings including the

given university among CUAA, RCCSE, and CAMS.

Ground Truth. Establishing the ground truth for university ranking from

scratch by ourselves is extremely resource consuming and not reliable. We

thus turn to justify the 2016 university ranking results by our model in a

pair-wise fashion. In particular, although the traditional university ranking

results of CUAA, RCCSE, and CAMS are time- and resource-consuming, they

are generated by experts with sufficient domain knowledge. We view them as

annotators and establish the pair-wise ground truth upon their 2016 results.

Note that the selected rankings are the most popular university rankings in

China, which focus on evaluating the comprehensive quality of universities.

Given a pair of universities < ui, uj >, if all CUAA, RCCSE, and CAMS 2016

rank ui as better or worse than uj , then the pair is labeled as 1 or -1, respectively.

Otherwise, it is labeled as 0, meaning ui and uj are not distinguishable. The

statistics of the constructed ground truth are shown in Table 3.3.
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Table 3.3: Statistics of the constructed ground truth.

Universities
University Pairs

Label 1 Label 0 Label -1 All

640 178,342 48,448 178,342 405,132

Evaluation Metrics. The performance of our model and the baselines are

measured by Cohen’s kappa coefficient (κ) [107], macro-averaged F1 score, and

micro-averaged F1 score [16]. We also carry out the significance test and report

the p-values, e.g., p@F1.

University Pair Tagging. Regarding the learned ranking list f , the label of

the i-th and j-th universities is set as,
1, if fi − fj > θ,

−1, if fi − fj < −θ,

0, otherwise.

(3.17)

θ is a hyperparameter and empirically set as 0.004. Note that other values in

{0.001, 0.002, · · · , 0.01} would lead to similar conclusions.

Compared Methods. We compare the GMR with the following baselines,

• Historical Ranking (HR): It takes the historical ranking list y as current

ranking.

• NCEE Enrollment Scores (NES): It ranks universities upon the average

NCEE enrollment scores of universities.

• Concatenation (Con): It is an early fusion method that first concatenates

features of all channels, and then performs graph-based ranking on graphs

constructed from the concatenated features [82].

• Voting (Vot): It is a late fusion method that separately performs graph-based

ranking upon each channel, and then averagely fuses the generated ranking

lists into a single one [25].

• Joint Learning (JL): It belongs to early fusion, which learns a common

ranking list by simultaneously performing regularization on Laplacian matrices

of all channels [160].
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• Subspace Learning (SL): It first maps multi-channel data to subspaces with

the same dimension by dictionary learning [10]. Regarding representations in

subspaces, it then performs the ranking via JL. Note that this method also

belong to early fusion.

It is worthwhile highlighting that Con, Vot, JL, and SL also encourage the

final ranking results to be close to the initial ranking one.

3.5.2 Parameter Tuning

In the proposed GMR, we have two implicit parameters and two explicit

parameters. They are the number of nearest neighbors k in hypergraph

construction, the number of clusters K, λ1 and λ2. During the experiments, we

heuristically set k to 5 based on our observation on the data. The optimal values

of the remaining parameters are carefully tuned with a 5-fold cross-validation.

In each round, we divide our dataset into two parts: 80% of the universities

pairs are used for tuning, and 20% are used for testing. We employ grid search

to select the optimal parameters with a small but adaptive step size. The search

ranges for λ1, λ2, and K are [0.1, 100], [10, 10, 000], and [1, 8], respectively. The

parameters corresponding to the largest micro-averaged F1 are used to report

the final results. For other compared methods, the procedures of parameter

tuning are the same to ensure fair comparison.

3.5.3 Performance Comparison

The comparison results between the proposed GMR and baselines are

summarized in Table 3.4. From this table, we have the following observations:

1) NES and HR perform worse than the other methods that leverage multi-

channel data. This demonstrates the importance of utilizing available multi-

channel data to improve ranking performance. Moreover, this result shows

the advantage of the graph-based learning solutions as compared to heuristic

ranking methods. 2) Vot performs worse than the three early fusion methods:

Con, JL, and SL. It indicates that late fusion methods are less suitable for

the multi-channel university ranking application. The Vot is suspected to be

affected by the noise in the multi-channel university data. 3) However, GMR

shows superior to the early fusion methods, which performs middle fusion (late
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Table 3.4: Performance comparison between GMR and baselines.

Methods
Macro Averaged Micro Averaged

κ p@κ
F1 p@F1 F1 p@F1

NES 0.540±3e-7 8e-10 0.761±7e-1 4e-9 0.572±2e-6 3e-9
HR 0.618±2e-7 1e-9 0.868±3e-7 2e-7 0.764±1e-6 8e-8
Con 0.801±3e-6 1e-5 0.896±5e-7 2e-6 0.823±1e-6 2e-6
Vot 0.684±6e-6 2e-8 0.878±7e-7 4e-7 0.784±2e-6 2e-7
JL 0.802±7e-6 2e-4 0.894±3e-6 1e-5 0.820±8e-6 1e-5
SL 0.800±4e-6 8e-5 0.893±2e-6 6e-6 0.818±6e-6 6e-6

GMR 0.812±4e-6 - 0.906±2e-6 - 0.840±4e-6 -

Table 3.5: Performance comparison among components in our GMR.

Methods
Macro Averaged Micro Averaged

κ p@κ
F1 p@F1 F1 p@F1

GMR-HRC 0.800±2e-6 2e-6 0.898±8e-7 2e-6 0.825±2e-6 2e-6
GMR-MD 0.809±5e-6 8e-4 0.902±1e-6 3e-5 0.834±3e-6 3e-5
GMR-DH 0.811±5e-6 9e-2 0.903±8e-7 6e-4 0.835±2e-6 1e-3
GMR-CC 0.802±2e-5 5e-4 0.903±3e-6 4e-3 0.834±8e-6 3e-3

GMR 0.812±4e-6 - 0.906±2e-6 - 0.840±4e-6 -

fusion after early fusion). This result validates the effectiveness of the proposed

middle fusion method. 4) All the p-values of the pairwise significance t-test

based on 5-fold evaluation are much smaller than 0.05. This demonstrates that

the performance improvements achieved by our model over the baselines are

statistically significant.

3.5.4 Component-wise Comparison

We also carry out experiments to justify the effectiveness of each component. In

particular, we compare the following methods by disabling some terms of our

objective function in Equation (3.7).

• GMR-HRC: We set C to an identity matrix to ignore the historical ranking

confidence.

• GMR-MD: We set all Ski ’s to identity matrices to ignore the missing data

problem.

• GMR-DH: In this method, the semi-structured and unstructured data from

one channel are directly concatenated and used to construct the simple graph.

• GMR-CC: It learns a common space from all channels and then performs

ranking on the common representations.

Table 3.5 displays the performance of the above methods. From this table, we

observe that: 1) GMR performs better than the remaining methods. It confirms
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Table 3.6: Performance comparison among channels with our GMR
model. Official, Media, Academic, Employ, Crowd respectively denote
the official, mass media, academic, employment, and general user
channels. The best and worst performance w.r.t. each metric is
highlighted with bold font size and underline, respectively.

Methods
Macro Averaged Micro Averaged

κ p@κ
F1 p@F1 F1 p@F1

No-Official 0.791±6e-6 7e-6 0.867±4e-6 9e-8 0.783±9e-6 1e-7
No-Media 0.805±2e-6 6e-5 0.893±6e-7 6e-7 0.820±2e-6 9e-7

No-Academic 0.817±9e-6 1e-3 0.902±3e-6 2e-4 0.835±9e-6 6e-4
No-Employ 0.795±4e-6 6e-5 0.900±1e-6 3e-4 0.829±3e-6 2e-4
No-Crowd 0.814±1e-5 8e-2 0.895±4e-6 1e-5 0.825±1e-5 3e-5

All 0.812±4e-6 - 0.906±2e-6 - 0.840±4e-6 -

Table 3.7: Performance comparison among our ranking and traditional
Chinese university rankings.

Ranking Results Ours RCCSE CAMS CUAA

Average Scores 8.12±0.99 7.59±1.51 7.71±1.35 8.06±0.81
Highest Score Percentage 53% 18% 35% 59%

the effectiveness of jointly considering the block-wise data completion, cluster-

wise ranking, and ranking results fusion. 2) GMR-HRC performs much worse

than GMR. It shows the importance of carefully setting entity-aware ranking

smoothness, and hence assigning identical ranking smoothness to all the entities

may lead to suboptimal performance.

3.5.5 Channel Comparison

To measure the representation ability of each channel, we hold one channel

out and feed the others into our GMR model. The experimental results are

displayed in Table 3.6. We observe that: 1) The performance of GMR decreases

more when the official channel is not used. This suggests that the official channel

provides more informative and important cues for university ranking. 2) With all

channels used, GMR performs the best, which indicates that universities can be

comprehensively described by more channels. 3) All the p-values of the pairwise

significance t-test are much smaller than 0.05, which verifies the significance of

performance improvements.

3.5.6 User Study

To further investigate the effectiveness of our scheme, we invite 17 volunteers16 to

evaluate our generated ranking list and the ranking results of RCCSM, CAMS,

16The volunteers are Chinese graduate students, research fellows, and visiting professors in
different majors of National University of Singapore. All of them have either studied or
worked in one of the top universities in China.
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and CUAA in 2016. Each of the volunteers is presented the top-30 of each

ranking list and required to assign it with one of eleven scores (ranging from 0

to 10). These scores represent the strength of the volunteer’s agreement with

the given ranking list. If the volunteer assign score s, it means the number of

universities whose ranks are consensus with the expectations of the volunteer

belongs to the range (3(s− 1), 3s]. For instance, if the volunteer thinks that 20

of the top-30 universities are ranked as exepected, then he/she will assign 7 to

the given ranking list. The user study results are summarized in Table 3.7. As

can be seen, our ranking achieves an average score as high as the best traditional

ranking among RCCSM, CAMS, and CUAA. It shows that our ranking results

are comparable to those traditional rankings and further validates the usability

of our scheme.

3.6 Conclusion

In this work, we proposed a new graph-based learning method by incorporating

multiple types of relations represented by different graphs. The proposed scheme

clusters highly correlated graphs into groups during the fusion process to model

the correlation across relations so that the local smoothness is performed in a

type-aware manner. We applied the proposed scheme in a meaningful real-world

social indicator computation application, university ranking, where data from

different channels reflects the relation of universities from different perspectives.

To justify the effectiveness of the proposed method, we collected a dataset of

Chinese universities and conducted extensive experiments. The experimental

results demonstrate that the proposed method can capture the importance of

different relations (channels) while the official channel dominates the university

ranking performance as expected. Moreover, the generated ranking results are

comparable to the traditional Chinese university rankings, which demonstrates

the effectiveness and rationality of our scheme.

As shown in the experiment results, the ranking performance is sensitive to the

criteria to evaluate graph correlation and the technique to clustering graphs into

groups. Therefore, it is worthwhile to explore techniques to enhance the stability
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of the proposed scheme.
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Chapter 4

Learning on Partial-order

Hypergraphs

In this chapter, we introduce a new graph-based learning framework which

encodes task-specific knowledge in the format of partial-order rules.

4.1 Introduction

Hypergraph is a generalizaton of simple graph, in which an edge (a.k.a.

hyperedge) can connect any number of vertices rather than just two. As such, it

can model high-order relations among multiple entities that cannot be naturally

represented by simple graphs. Figure 4.1 shows an illustrative example of using

graph methods to tackle the university ranking task [49]. Each university has two

features: the located city and the salary level of its graduates (Figure 4.1a). A

simple graph can be constructed by connecting a university with its two nearest

neighbors (Figure 4.1b). We can then perform a manifold ranking on the simple

graph to obtain a ranked list of universities. Further, we can build a hypergraph

by connecting universities with a same attribute (Figure 4.1c), e.g., universities

that are located in the same city, which is a high-order relation among universities

missed by the simple graph.

In existing research, hyperedges in a hypergraph are typically formed by linking
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Figure 4.1: An example of using graph methods to tackle the
university ranking task. (a) Input data, where each row represents
a university and its features: city and salary level; for salary level,
smaller index indicates higher salary (i.e., s1 > s2 > s3 > s4). (b) A
simple graph, where an edge connects a vertex and its two-nearest
vertices. (c) A hypergraph, where a hyperedge connects vertices with
a same attribute: either in the same city or having the same salary
level. (d) A partial-order hypergraph, where the directed edges within
an hyperedge represent the partially ordering relationship between
vertices on the salary level.

similar entities — either globally similar such as a cluster of entities that are

close to each other [161, 110, 151], or locally similar such as sharing a same

attribute [15, 150, 179]. However, we argue that many real-world applications

need to deal with far more complex relations than similarities. One particular

type is the ordering relationship among entities, which commonly exists in graded

categorical features and numerical features. We take the university ranking task

shown in Figure 4.1 as an example. Two universities u5 and u6 are located

in the same city, while u5 has a salary level much higher than that of u6 — an

evidence that u5 might be ranked higher than u6. Unfortunately, the hypergraph

constructed in Figure 4.1c encodes the similarity information only, thus fails

to capture the ordering information on salary. To address this limitation, an

intuitive solution is to incorporate the ordering relations by adding directed

edges between entities of a hyperedge, as shown in Figure 4.1d. It is worth

noting that not every two entities within a hyperedge have an ordering relation;

for example, two entities may have the same graded categorical feature (see u1

and u2 in Figure 4.1d) or the difference on the target numerical feature is not

significant enough. As such, we term such generalized hypergraph with partial-

order relations on vertices as a Partial-Order Hypergraph (POH), which is a new

data structure that has never been explored before.
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In this work, we formalize the concept of POHs and further develop

regularization-based graph learning theories on them. We express the partial-

order relations with logical rules, which can be used to encode prior domain

knowledge. In the previous example of university ranking, one example of domain

knowledge can be that for two universities ui and uj are in the same city, while

ui tends to be ranked higher than uj if the salary level of ui is higher than that

of uj . The corresponding logical rule can be written as:

city=(ui, uj) ∧ salary>(ui, uj)→ score>(ui, uj). (4.1)

We extend conventional hypergraph learning [190, 161] to incorporate such

logical rules for an effective learning on POHs. Besides the improved accuracy,

we can further enhance the interpretability of hypergraph learning. Specifically,

we can interpret the learning results by verifying the logical rules, rather

than relying on the smoothness factor only. To justify our proposed partial-

order hypergraph and the learning method, we employ them to address two

applications: university ranking [49] and popularity prediction [30, 70]. The two

tasks are representatives of two machine learning tasks: unsupervised ranking

and semi-supervised regression, respectively. Extensive results demonstrate the

superiority of our proposed method, which significantly outperforms existing

simple graph and hypergraph methods.

The key contributions of this work are summarized as follows.

• We propose a novel partial-order hypergraph to represent the partial-order

relations among vertices, which are missing in the traditional hypergraph.

• We generalize existing graph-based learning methods to partial-order

hypergraphs to encode domain knowledge in the form of logical rules.

• We empirically demonstrate the effectiveness of our POH and learning method

on two machine learning tasks of unsupervised ranking and semi-supervised

regression.
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4.2 Related Work

Our work is directly related to the recent work on hypergraphs, which can be

separated into two main categories: hypergraph construction and hypergraph

utilization. Since proposed in [190], researchers have paid lots of attention on

how to construct hypergraphs. For instances, Wang et al. [161] leveraged a

sparse representation of the entity feature space to generate hyperedges and

learn the relationship among hyperedges and the connected vertices. Instead of

simply learning a sparse representation, Liu et al. [101] employed an elastic net

to regulate the representation learning. Besides, Feng et al. [50] jointly learned

hypergraph representations of multiple hypergraphs by further encouraging the

consistency among different hypergraph representations. However, none of the

aforementioned work is able to incorporate the partial-order relations among

entities that exist in graded categorical features and numerical features during

the construction of hypergraphs. They thus lead to severe information loss and

limit the expressiveness of the constructed hypergraphs.

Besides, hypergraph and hypergraph-based learning have been widely applied on

many machine learning tasks, including clustering, embedding, ranking, semi-

supervised classification and regression [110, 151, 96, 15, 150, 179]. For instance,

Li and Li [96] constructed a hypergraph to represent the correlations among

news readers, news articles, topics and name entities and then ranked the news

articles on the hypergraph to make recommendation for readers. Bellaachia and

Al-Dhelaan [15] utilized a hypergraph to represent the relations among candidate

sentences and made a graph-based extractive document summarization. Yoshida

and Yuichi [178] used a hypergraph to estimate the betweenness centrality and

importance of vertices. Huang et al. [81] constructed a hypergraph of images and

predicted the attributes of the images with hypergraph-based label propagation.

Tran et al. [150] built a hypergraph where vertices and hyperedges respectively

represent features and training samples to represent the sparse pattern of the

training data. Hmimida and Kanawati [77] depicted the relation among social

users, resources, and the tags of resources assigned by the users. They then

employed hypergraph-based ranking to recommend candidate tags for resources.

These articles indicated the popularity and usability of hypergraphs and learning
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on hypergraphs. However they only utilized conventional hypergraphs instead

of simultaneously improving the representation ability of the conventional

hypergraphs and the corresponding learning methods.

4.3 Preliminaries

4.3.1 Hypergraph

As aforementioned, the vertices and hyperedges of a hypergraph represent the

entities of interest and their relations, respectively. Given N entities with their

features X = [x1,x2, · · · ,xN]T ∈ RN×D, we can construct a hypergraph with

N vertices and M hyperedges, for which the structure can be represented as

an incidence matrix H ∈ RN×M . Similar to the incidence matrix of a simple

graph, H is a binary matrix, where Hij = 1 if the i-th vertex is connected

by the j-th hyperedge, otherwise Hij = 0. There are two ways to define a

hyperedge in existing work: attribute-based [96, 15, 150, 179] and neighbor-

based [161, 110, 151]. An attribute-based hyperedge connects vertices with same

value on one or multiple target attributes (i.e., features). A neighbor-based

hyperedge connects vertices nearby, based on these vertices with similarity larger

than a threshold or simply using the k-nearest neighbors.

Moreover, we use the diagonal matrix E ∈ RM×M to denote the degrees of

hyperedges, i.e., Ejj =
∑N

i=1Hij denotes the number of vertices connected by

the j-th hyperedge. Analogous to simple graph that an edge typically has a

weight to model the strength of the relation, a hyperedge in hypergraphs also

has a weight to denote the density of the vertices it is connected. Such weights

are represented as a diagonal matrix W ∈ RM×M . To estimate the hyperedge

weight, many methods have been proposed, among which the most popular

one is to use the average pairwise similarity between vertices connected by the

hyperedge:

Wjj =
1

Ejj

∑
Hij=1

g(xi,xj), (4.2)

where g denotes the similarity function on feature vectors. In graph-based

methods, one common choice for g is the radial basis function (RBF) kernel,
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i.e., g(xi,xj) = exp(
−‖xi−xj‖2

2σ2 ). Given the weights for hyperedges, we can further

derive the degree of a vertex i: Vii =
∑M

j=1WjjHij , i.e., the sum of weights of

hyperedges that are connected with i. We use the diagonal matrix V ∈ RN×N

to denote the vertex degree matrix.

4.3.2 Learning on Hypergraphs

Graph-based learning has been applied to various machine learning tasks such

as manifold ranking, semi-supervised learning, and clustering [108, 180, 3]. The

general problem setting is to learn a prediction function ŷ = f(x), which maps

an entity from the feature space to the target label space. It is usually achieved

by minimizing an objective function abstracted as:

Γ = G + λL, (4.3)

where L is a task-specific loss function that measures the error between prediction

ŷ and ground-truth y, G is a graph regularization term that smooths the

prediction over the graph, and λ is a hyperparameter to balance the two terms.

The regularization term typically implements the smoothness assumption that

similar vertices tend to have similar predictions. For hypergraphs, a widely used

G is the hypergraph Laplacian term, defined as:

G =

N∑
i=1

N∑
j=1

g(xi,xj)

M∑
k=1

HikWkkHjk︸ ︷︷ ︸
strength of smoothness

∥∥∥∥∥f(xi)√
Vii
− f(xj)√

Vjj

∥∥∥∥∥
2

︸ ︷︷ ︸
smoothness

. (4.4)

The regularization term operates smoothness on each pair of entities, enforcing

their predictions (after normalized by their degrees) to be close to each other.

The strength of smoothness is determined by the similarity over their feature

vectors g(xi,xj) and the hyperedges that connect the two vertices. It can be

equivalently written in a more concise matrix form:

G = trace(Ŷ(S� L)ŶT ), (4.5)

where Ŷ = [ŷ1, ŷ2, · · · , ŷN], each element of S is Sij = g(xi,xj), and L is

defined as L = V−1/2(V −HWHT )V−1/2, known as the hypergraph Laplacian
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matrix. Note that L is typically a sparse matrix, where an entry Lij is nonzero

only if vertex i and j are connected by at least one hyperedge. Thus, the time

complexity of calculating G is linear w.r.t. the number of nonzero entries in L,

which is far smaller than N2.

4.4 Partial-Order Hypergraph

Distinct from the typical problem setting of hypergraph learning, we further

associate the problem with a set of logic rules, which can be used to encode the

partial-order relations between entities:

{pr(xi,xj)→ qr(f(xi), f(xj)) | r = 1, 2, · · · , R} , (4.6)

where r denotes a partial-order relation, and there can be multiple relations (in

total R) for a problem. For example, in the university ranking task, we can have a

partial-order relation based on salary level, number of students, research grants,

among other features. For each partial-order relation r, qr is a binary function

indicating whether the prediction of two entities satisfies a certain relation. For

example, in a ranking/regression task, qr can indicate whether f(xi) is higher

than f(xj); in a classification task, qr can indicate whether the probability of

xi being a class is higher than that of xj. The pr(xi,xj) denotes whether xi

and xj have the partial-order relation r. A partial-order relation is a pairwise

relation satisfying the following basic properties on the entities connected by any

hyperedge:

• Irreflexivity: not pr(xi,xi).

• Asymmetry: if pr(xi,xj) then not pr(xj,xi).

• Transitivity: pr(xi,xj) and pr(xj,xk) implies pr(xi,xk).

In what follows, we first present how to construct and represent a POH. We

then elaborate our proposed regularized learning on POHs. Lastly, we analyze

its time complexity.
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Figure 4.2: A toy example to illustrate the construction of matrix
representation of a POH. Given the feature matrix X and a partial-
order relation r, we construct the incidence matrix H of the
hypergraph and the binary relation matrix Pr, respectively. We then
generate the co-occurrence matrix C from H and apply element-wise
product to C and Pr to get the partial incidence matrix Hr.

4.4.1 Construction and Representation

To jointly represent the partial-order relations and the higher-order relations

among entities, we first construct a normal hypergraph, and then use the directed

edges to connect vertices that have any partial-order relation. Note that it

is possible that there are multiple edges between two vertices, since multiple

partial-order relations are considered. Concerning the efficiency of downtream

graph-based learning applications, we constrain the directed edges to exist only

on vertices connected by at least one hyperedge. Such a constraint guarantees

that the number of directed edges constructed from a partial-order relation is no

larger than the number of nonzero entries in the hypergraph Laplacian matrix.

As such, a learning algorithm that enumerates all directed edges will not increase

the time complexity of calculating the hypergraph Laplacian term.

As described in Section 4.3.1, after constructing a hypergraph, we use several

matrices to represent it, such as the incidence matrix H and hypergraph

Laplacian matrix L. In addition to these matrices, we further introduce a partial
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incidence matrix Hr ∈ RN×N to represent the directed edges of a partial-order

relation r. As shown in Figure 4.2, given a partial-order relation r, we first

construct a binary relation matrix Pr ∈ RN×N , where P rij = 1 if pr(xi,xj) is

true. Based on the incidence matrix H of the hypergraph, we further build a

co-occurrence matrix C ∈ RN×N , where each element Cij denotes the number

of hyperedges connecting vertex i and j. Then the partial incidence matrix Hr

can be derived,

Hr = Pr �C, (4.7)

where � is the element-wise matrix multiplication. In the partial incidence

matrix, a non-zero entry Hr
ij means that the i-th and j-th vertices have the r-th

partial-order relation, and they are simultaneously connected by Hr
ij hyperedges.

In other words, we assign higher weights to vertex pairs that are connected by

more hyperedges, accounting for the effect that vertex pairs with higher co-

occurrence are more important.

4.4.2 Learning on Partial-Order Hypergraphs

After constructing a POH, we have several matrices to represent it, including the

general ones describing a conventional hypergraph (e.g., the incidence matrix H

and edge weight matrix W), and the specific partial incidence matrices {Hr|r =

1, 2, · · · , R} to model partial-order relations. We now consider how to extend

the conventional hypergraph learning methods for POHs.

The key problem is the encoding of the partial-order relations and the

corresponding logical rules into the learning framework of Equation (4.3).

Generally speaking, there are two solutions — either injecting the rules into

the predictive model (i.e., the definition of f(x)), or using the rules to regularize

the learning (i.e., augmenting the objective function Γ). The first solution may

need different ways to encode the rules for different predictive models, such as

the logistic regression, factorization machines [69], and neural networks [68]. As

such, we opt for the second solution, aiming to provide a generic solution for

POH learning. Specifically, we append an additional regularization term P that
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encodes partial-order rules to the objective function:

Γ = G + λL+ βP, (4.8)

where β is a hyperparameter to balance P and the other two terms. Similar to

the smoothness regularizer G, P should also operate on the predicted label space

to regularize the learning process. We define P as:

P0 =

R∑
r=1

arE(i,j)∼Hr
ij 6=0 [1− qr(ŷi, ŷj)] =

R∑
r=1

ar
|Hr|

∑
{i,j|Hr

ij 6=0}

1− qr(ŷi, ŷj),

(4.9)

where ŷi = f(xi) is the prediction of xi, |Hr| denotes the number of nonzero

entries in Hr, and ar is the hyperparameter to control the importance of the

logical rule of the r-th partial-order relation. The core idea of this regularization

term is to enforce the predictions of vertices that have a partial-order relation to

be consistent with the corresponding rule. To be more specific, small values of

P0 can be achieved if qr(ŷi, ŷj) is 1, meaning that pr(xi,xj) is true (evidenced

by Hr
ij 6= 0) and the rule pr(xi,xj) → qr(f(xi), f(xj)) is satisfied. However,

this definition treats all vertex pairs of a partial-order relation equally, without

considering their relative strengths. This assumption may decrease modelling

fidelity for practical applications. To address this problem, we revise the

regularizer as:

P1 =
R∑
r=1

ar
|Hr|

∑
{i,j|Hr

ij 6=0}

(1− qr(ŷi, ŷj))H
r
ij , (4.10)

which incorporates Hr
ij as a coefficient to rescale the regularization strength

of a vertex pair. With such a formulation, we enforce stronger partial-order

regularization for vertex pairs that are connected by more hyperedges. Lastly,

to get rid of the difficulties in discrete optimization, we replace the binary

logic function qr with a continuous function sr that approximates it. Such

approximation trick allows stable optimization and has been widely used in

probabilistic soft logics [9]. This leads to the final version of our proposed partial-
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order regularizer:

P =
R∑
r=1

ar
|Hr|

∑
{i,j|Hr

ij 6=0}

sr(ŷi, ŷj)H
r
ij , (4.11)

where sr is a self-defined function adjustable for different problems. For instance,

sr might be the subtraction between the predicted ranks ŷi − ŷj in a ranking

problem, while in a classification problem, sr could be the gap between the

predicted probabilities on a specific class.

Optimization. By minimizing the objective function of Equation (4.8), we

can achieve the prediction function that is smooth over the hypergraph and

satisfies the logical rules on partial-order relations. Note that the regularization

terms L and P operate on the predicted label space only and do not introduce

extra model parameters. As such, the only model parameters to learn come

from the predictive model f(x). Given that f is a differentiable function (e.g.,

logistic regression and neural networks), we can optimize the objective function

with standard gradient-based methods, such as the stochastic (or batch)

gradient descent [59]. Moreover, one can also directly learn f(x) without

specifying an explicit form of the predictive model. This will make the

prediction function comply with the regularization to the maximum degree.

We will empirically study how would this affect the prediction performance for

downstream applications in Section 4.6.

4.4.3 Time Complexity Analysis

In this subsection, we analyze the time complexity of POH learning by comparing

it with the conventional hypergraphs. As discussed in [89] and Section 4.3.2,

the computational complexity of conventional hypergraph learning methods are

O(J), where J denotes the number of nonzero entries in the sparse hypergraph

Laplacian matrix L. In contrast, the additional computational cost of our POH

learning comes from the construction of the partial incidence matrices {Hr|r =

1, 2, · · · , R} and the partial-order regularization term P. To compute Hr, we

need to obtain the co-occurrence matrix C first, and then evaluate the element-

wise product C � Pr. For C, we can achieve it by traversing all the nonzero

entries on the incidence matrix H, for which the complexity is O(J). Then for
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each nonzero element Cij in C, we check whether pr(xi,xj) is true or not to

obtain C �Pr. As such, the complexity of constructing a Hr is O(J), and the

overall complexity of constructing all R partial incidence matrices is O(RJ).

Similarly, the computation of P can be done in O(RJ) time. In a real-world

application, the number of partial-order relations R is typically small, since we

need to account for the most prominent numerical or graded categorical features

only. As such, the overall time complexity of our POH learning is essentially

O(J), which is the same as that of conventional hypergraph learning.

4.5 University Ranking

Following the work described in Chapter 3, we formulate university ranking

as an unsupervised ranking (i.e., re-ranking) problem. Given N universities

with a feature matrix X ∈ RN×M and a historical ranking result y ∈ RN , the

target is to learn a new ranking f ∈ RN . To solve the problem, we manually

select several partial-order relations and construct a partial-order hypergraph

(POH) to represent the given universities. Upon the constructed POH, we learn

f by minimizing a ranking instantiation of the POH learning objective function.

Specifically, we set the loss term in Equation (4.8) as L = ‖y − f‖2F , which

encourages the learned ranking to be consistent and smooth with the historical

one. Besides, we set the soft logic functions {sr|r = 1, 2, · · · , R} as sr(fi, fj) =

fi − fj , i.e., university i is encouraged to be ranked ahead of university j if

the two universities have the selected partial-order relations. By specifying the

above application-specific terms, we derive the objective function for the task,

Γ = fTLf + λ‖f − y‖2F + β

R∑
r=1

ar
|Hr|

∑
{i,j|Hr

ij 6=0}

ReLU((fi − fj)Hr
ij), (4.12)

where we further use the rectifier function (ReLU) [65] on the partial-order

regularization term, so as to guarantee the objective function to be non-negative

for stable optimization.

4.5.1 Experiment Settings

Dataset. To investigate the effectiveness of the proposed method, we employ

the dataset of Chinese university ranking collected by [49]. This dataset contains
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743 Chinese universities with data collected between January 1st, 2015 and May

1st, 2016. Among the 743 universities, we select 438 top-tier ones in China1 since

they have more academic and research activities. Towards the historical ranking

result y, we merge the ranking results in 2015 from four well-known ranking

systems of Chinese universities, namely, CUAA, WSL, WH, and iPIN2. The

ranking ground-truth is generated in the same way, but based on the rankings

of the four systems in the year 2016. As such, the task can be understood as

using the past year’s ranking and this year’s features to predict the ranking of

universities in this year. We normalize the constructed historical ranking result

and the ground-truth into range [0, 1] by scaling them with 1/N .

Evaluation. We perform 5-fold cross-validation, employing three metrics to

evaluate the ranking performance: mean absolute error (MAE) [170], Kendall’s

tau (Tau) [116], and Spearman’s rank (Rho) [142]. The three metrics have been

widely used to evaluate pointwise, pairwise, and listwise ranking methods [102].

Note that better performance is evidenced by smaller MAE, larger Tau and Rho

scores. Moreover, we carry out the Student’s t-test and reported the p-values

where necessary.

Methods. We compare with the following baselines:

• Simple Graph [191]: It first constructs a simple graph to represent the

universities, where the edge weight between two vertices is evaluated using the

RBF kernel. We set the radius parameter σ as the median of the Euclidean

distances of all pairs. The method then calculates the Laplacian matrix

L, learning f by minimizing the objective function fTLf + λ‖y − f‖2. We

experiment with different values of λ and report the best performance.

• Hypergraph [15]: It first calculates the similarities between universities, and

then constructs the hypergraph using neighbor-based methods. Specifically,

the i-th hyperedge connects the k universities that are most similar to

university i. The learning of f is performed by minimizing Equation (4.3).

We tune the two hyperparameters k and λ.

1In China, universities are officially separated into three tiers by Ministry of Education
(https://tinyurl.com/moe-univ-list/.).

2 CUAA: http://www.cuaa.net/cur/. WSL: http://edu.sina.com.cn/gaokao/wushulian/. WH:
http://www.nseac.com/html/168/. iPIN: https://www.wmzy.com/api/rank/schList/.
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• GMR [49]: This is the state-of-the-art method for the university ranking

task. It builds a simple graph from the features of each channel, modelling

the relations between channels to reach a consensus ranking on all simple

graphs. We use the same hyperparameter settings as report in their paper.

Note that we omit the comparison with TMALL and GCN mentioned in

Section 4.6.1. Because [49] has shown that TMALL (similar to the JL baseline

in their paper) is less effective than GMR; GCN is not fit for this unsupervised

ranking task as it is designed for semi-supervised and supervised tasks [89].

We evaluate several POH methods that incorporate different partial-order

relations on the same hypergraph structure of Hypergraph:

• POH-Salary: This method considers the partial-order relation on the salary

feature. We encode the logical rule salary>(xi,xj)→ rank<(xi,xj), meaning

that xi tends to be ranked higher than xj if the salary feature of xi is higher

than that of xj.

• POH-NCEE: This method considers the partial-order relation on the NCEE

feature, which stands for a university’s admission requirement on the score

of National College Entrance Examination. The logical rule to be encoded is

naturally NCEE>(xi,xj)→ rank<(xi,xj), meaning universities with a higher

NCEE score tend to have a better quality.

• POH-All: In this method, we model both partial-order relations as encoded

in POH-Salary and POH-NCEE. We set the importance hyperparameters

for the regularizers of the two rules as a1 and 1 − a1, respectively. Tuning

procedure of a1 will be detailed in the following section.

Hyperparameter Tuning. We employ grid search to select the optimal

hyperparameters for POH methods based on the results of Kendall’s tau (τ). The

optimal hyperparameter setting and implementation of the compared methods

can be publicly accessed3. For POH-Salary and POH-NCEE, we tune one

implicit (k) and two explicit hyperparameters (λ and β). To validate the

strength of the proposed POH over traditional hypergraph, we set k and λ as

the optimal ones of the baseline Hypergraph, and then search β in the range of

3https://github.com/hennande/Partial Order Hypergraph
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Table 4.1: Performance comparison on university ranking. ∗ and ∗∗
denote that the corresponding performance is significantly better (p-
value < 0.05) than all baselines and all other methods, respectively.

Methods MAE Tau Rho

Simple Graph 0.074± 9e-3 0.870± 2e-2 0.970± 8e-3
Hypergraph 0.067± 7e-3 0.876± 9e-3 0.974± 5e-3

GMR 0.065± 7e-3 0.871± 3e-2 0.970± 1e-2

POH-Salary 0.054± 1e-2∗ 0.892± 1e-2∗ 0.979± 5e-3∗

POH-NCEE 0.055± 1e-2∗ 0.893± 9e-3∗ 0.978± 5e-3∗

POH-All 0.053± 1e-2∗ 0.898± 1e-2∗∗ 0.980± 6e-3∗∗

[1e-4, 1e1]. For POH-All, we tune one more hyperparameter a1, which controls

the importance of logical rules and is in the range of [0, 1].

Note that we have intentionally fix k and λ to the optimal ones of Hypergraph,

which also simplifies the tuning process. Further tuning k and λ based on

the performance of POH methods can lead to even better performance (see

Figure 4.4). Figure 4.3 shows the performance of POH-All w.r.t. β and a1. This

is accomplished by varying one parameter and fixing the other to the optimal

value. As can be seen, our method is rather insensitive to hyperparameters

around their optimal settings.

4.5.2 Experiment Results

Method Comparison. Table 4.1 summarizes the performance comparison

on university ranking, from which we have the following observations: (1)

Hypergraph performs better than Simple Graph, which verifies that

considering the higher-order relations among universities is effective for the

ranking task. (2) All POH-based methods outperform baselines by a large

margin (e.g., POH-All ourperforms GMR with an improvement of 18.46%,

3.10%, and 1.03% w.r.t. MAE, Tau, and Rho, respectively). It demonstrates

the effectiveness of our proposed POH and regularized learning in integrating

partial-order relations. (3) POH-All outperforms both POH-Salary and

POH-NCEE. It further verifies the advantage of POH-based learning methods

and reflects that jointly modelling multiple partial-order relations and rules is

helpful. (4) The p-values of student’s t-test between POH-based methods and

all the other methods are smaller than 0.05, indicating the significance of the

performance improvements.
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Figure 4.3: Procedure of tuning β and a1 for POH-All. The red dotted
line marked the optimal settings

Figure 4.4: Performance comparison on Kendall’s tau (τ) of
Hypergraph and POH-based methods w.r.t. different k.

As we construct hypergraphs by connecting a vertex with its k-nearest vertices,

the larger k makes the POH-based methods to consider more vertex pairs

with the given partial-order relations (these pairs would be eliminated if the

vertex pair is not connected by any hyperedge). It is thus interesting to

see how does the setting of k impact the performance of POH learning.

Figure 4.4 shows the performance of Tau of Hypergraph and our POH-

based methods on different k. Note that other hyperparameters have been

fairly tuned for each setting of k. As can be seen, all POH-based methods

outperform the Hypergraph on all settings. It demonstrates that the proposed

POH learning consistently outperforms the conventional hypergraph, regardless

of the underlying hypergraph structure. Moreover, all POH-based methods

achieve performances better than those reported in Table 4.1, which shows

the performance of POH methods on the optimal k of Hypergraph only. It

reveals the potential of POH-based methods to further improvements if a better

hyperparameter tuning strategy is applied.

Result Analysis. To understand the results better, we perform finer-grained

error analysis. Given the result generated by a method, we generate an array of

rank positions (integers from 1 to N) for universities, computing the absolute
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Figure 4.5: Distribution of absolute rank errors.

Figure 4.6: Percentage of correctly ranked university pairs.

error on the rank position on each university.

Figure 4.5 depicts the distribution of the absolute rank errors as a boxplot. As

can be seen, the rank error distribution of POH-based methods is more dense and

centralizes at smaller medians than that of Simple Graph and Hypergraph.

It provides sufficient evidence on the better ranking generated by the POH-based

methods. Moreover, we find that Simple Graph and Hypergraph make errors

larger than 5 on about 25% of the universities, which is rarely seen from POH-

based methods. Meanwhile, the largest error made by Simple Graph and

Hypergraph is almost two times that of POH-based methods. These results

demonstrate that POH-based methods are more robust, thus more applicable

to real-world applications. Among the baselines, GMR achieves the smallest

rank error, which is comparable with that of POH-Salary. This signifies the

usefulness of modelling the relations among data from different channels, which

could be a future direction to be explored on POH-based methods.

Besides the investigation on pointwise rank errors, we further performed an

analysis on pairwise ranks. For each method, we count the number of university

pairs that are ranked correctly, and drew the percentage of correct pairs in Figure
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4.6. As shown, POH-based methods manage to generate ranks with correct

order on 1% more university pairs than those on Simple Graph, Hypergraph,

and GMR. This further demonstrates the accuracy and advantage of POH-

based methods. Considering that there are more than 80,000 university pairs, an

improvement of 1% (correctly ranking 800+ pairs) is a significant improvement.

4.6 Popularity Prediction

Predicting the popularity of online content is a hot research topic in social media

mining and has varying problem statements [70, 132]. Following the recent

work on micro-video popularity prediction [30], we formulate the task as a semi-

supervised regression problem. Given N + U items with a feature matrix X ∈

R(N+U)×M and the ground-truth popularity of theN items y ∈ RN , the objective

is to learn a function ŷi = f(xi) that maps an item from the feature space to

the popularity space. To solve the problem, we first construct a POH with

partial-order relations on some important numerical features (to be detailed

later in experiments). We then derive an instantiation of the general framework

Equation (4.8) for the semi-supervised regression task as follows:

Γ = ŷTLŷ + λ

N∑
i=1

(ŷi − yi)2 + β

R∑
r=1

ar
|Hr|

∑
{i,j|Hr

ij 6=0}

ReLU((ŷj − ŷi)Hr
ij), (4.13)

where ŷ = [ŷ1, · · · , ŷN , ŷN+1, · · · , ŷN+U ] ∈ RN+U , denoting the prediction of all

items (both with labels and without labels).

4.6.1 Experiment Settings

We test the proposed method on a micro-video popularity prediction dataset [30].

The dataset contains 9,719 micro-videos collected from Vine4. Following the

original paper [30], we use the same features to describe the videos and

perform 10-fold cross-validation. From the regression perspective, we follow

the previous work [30] and employ normalized mean square error (nMSE).

Meanwhile, we utilize two ranking-oriented metrics, Tau and Rho correlation

coefficients. Besides, we carry out the Student’s t-test and report the p-values

where necessary.

4https://vine.co/.
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Methods. We compare with the following baselines:

• Simple Graph [191]: We apply the same setting as the Simple Graph

described in Section 4.5.1.

• Hypergraph [15]: We also adopt the same setting as the Hypergraph in

Section 4.5.1.

• TMALL [30]: This method first calculates a simple graph Laplacian matrix

with features from each modality (visual, audio, etc.). It then learns a common

space Laplacian matrix by considering the relations among different modalities

and fusing the corresponding graph Laplacian matrices. It finally performs a

simple graph learning like Simple Graph on the common Laplacian matrix.

We follow the settings as reported in their paper.

• GCN [89]: This is the state-of-the-art graph learning method by using

graph convolutional neural networks. We replace the log loss term in their

implementation with the same mean squared loss in Equation (4.13) for a fair

comparison. We carefully tune the four hyperparameters, namely, learning

rate, dropout ratio, l2-norm weight and hidden layer size.

• LR-HG: This method is similar to Hypergraph. Instead of directly learning

ŷ, we parameterize it as a linear regression (LR) model on features. The

optimization process learns the parameters of LR, which is used to predict ŷ.

We evaluate several POH methods on the same hypergraph structure of

Hypergraph:

• POH-Follow: This method considers a partial-order relation on the follower

feature (i.e., the number of followers of the user who posted the video). It

encodes the logical rule followers>(xi,xj) → popularity>(xi,xj), meaning

that xi would be more popular than xj if the user of xi has more followers

than that of xj.

• POH-Loop: This method has the same setting as POH-Follow, besides

that it encodes another partial-order relation on the loop feature (i.e., total

number of views of all videos posted by a user).
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Figure 4.7: Procedure of tuning β and a1 for POH-All. The red dotted
line marks the optimal settings.

Table 4.2: Performance comparison on popularity prediction. ∗ (∗∗)
denote that the corresponding performance is significantly better (p-
value < 0.05) than all baselines (all other methods).

Methods nMSE Tau Rho

Simple Graph 0.999± 1e-3 0.137± 2e-2 0.200± 2e-2
Hypergraph 1.000± 4e-5 0.165± 3e-2 0.240± 4e-2

TMALL5 0.979± 9e-3 - -
POH-Follow 1.000± 4e-4 0.393± 3e-2∗ 0.562± 3e-2∗

POH-Loop 0.997± 2e-3 0.376± 2e-2∗ 0.540± 3e-2∗

POH-All 0.989± 9e-3 0.419± 2e-2∗∗ 0.592± 3e-2∗∗

GCN 0.919± 6e-2 0.171± 2e-2 0.252± 3e-2
LR-HG 0.846± 1e-1∗ 0.117± 2e-2 0.182± 3e-2

LR-POH 0.724± 2e-1∗∗ 0.350± 2e-2∗ 0.496± 3e-2∗

• POH-All: This method jointly encodes the two partial-order relations in

POH-Follow and POH-Loop. We set the corresponding rule importance

hyperparameters as a1 and 1− a1, respectively.

• LR-POH: Similar to LR-HG, this method parameterizes the ŷ of POH-All

as a linear regression model on input features.

Hyperparameter Tuning. We employ the same procedure as described

in Section 4.5.1 to tune the hyperparameters of POH methods. Optimal

hyperparameter settings of each compared method will be released together with

their codes. We investigate the sensitivity of our proposed POH-based methods

by taking POH-All as an example. Figure 4.7 illustrates the performance of

POH-All while varying one hyperparameter and fixing the others with optimal

values. Again, the results demonstrate that our model is not sensitive to the

parameters around their optimal settings.

4.6.2 Experiment Results

Method Comparison. We first investigate the effectiveness of the proposed

methods. Table 4.2 shows the performance of all the compared methods. We

have the following findings:
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(1) Hypergraph outperforms Simple Graph w.r.t. Tau and Rho, although

they achieve the same performance level on nMSE. It verifies that considering the

higher-order relations among videos leads to more accurate popularity prediction

with relative orders.

(2) POH-Follow and POH-Loop further surpass Hypergraph with an

average improvement of 133.03% and 129.58% on the pairwise and listwise

ranking metrics; meanwhile, slight improvement is obtained on the pointwise

regression metric nMSE. This indicates that considering meaningful partial-order

relations is particularly helpful for better predicting the relative order of the

videos.

(3) POH-All outperforms POH-Follow and POH-Loop with a significant

average improvement on Tau (+8.97%) and Rho (+7.44%) as well as a slight

improvement on nMSE. It validates that jointly considering multiple partial-

order relations is useful.

(4) Comparing Hypergraph with LR-HG, we can see that better nMSE

can be achieved by using LR as the predictive model, but the two ranking

metrics become worse. The same situation can be observed for POH-All

and LR-POH. This provides evidence that using a sophisticated model can

better fit the labels and help to minimize the regression loss, however, the

ranking performance may not be necessarily improved. The same finding

has been observed before in popularity prediction [70] and another orthogonal

application of item recommendation [33]. In our case of graph-based learning,

the regularizers (for smoothness and partial-order rules) carry strong signals for

learning the relative orders between vertices. However, the regularization effects

might be weakened when a specialized model is used to fit the label in the

meantime. (5) GCN outperforms POH-All w.r.t. nMSE, while Tau and Rho

indicate that its ranking performance is worse. The lower nMSE of GCN can

be credited to the strong representation power of the underlying neural network,

which can fit the labels well. However, GCN may overfit the data and fail to

predict the popularity ranking well without regularization on the relative orders

of vertices.

(6) LR-POH achieves the best performance with significantly better nMSE

than all the other compared methods as well as tremendously better Tau and

Rho than all the baseline methods. This further demonstrates the effectiveness
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Figure 4.8: Performance comparison on Kendall’s tau (τ) of
Hypergraph and POH-based methods w.r.t. different k.

of our proposed POH learning.

We further study whether the performance improvements of the proposed POH-

based methods are consistent under different hypergraph settings. We compare

the optimal performance of Hypergraph, POH-Follow, POH-Loop, and

POH-All under different values of k, which controls the number of videos

connected by a hyperedge. As illustrated in Figure 4.8, all POH-based methods

outperform the Hypergraph under all the values of k by a large margin. It

is worth noting that the optimal performance of POH methods are better than

that shown in Table 4.2 (Table 4.2 shows the results of POH on the optimal

setting of Hypergraph). This is consistent with the university ranking task,

which implies the potential of further improving POH learning with a better

hyperparameter tuning strategy.

4.7 Conclusions

In this work, we proposed a novel partial-order hypergraph that improves

conventional hypergraphs by encoding the partial-order relations among vertices.

We then generalized existing graph-based learning methods to partial-order

hypergraphs by integrating the second-order logic rules that encode the partial-

order relations. Moreover, the time complexity of learning remains unchanged.

Experimental results on university ranking and video popularity prediction

demonstrate the effectiveness of our proposed methods.

In addition, the results on popularity prediction show the merit of representation
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learning operations in fitting the data. Recall that LR-POH (GCN)

outperforms POH-All (Simple Graph) w.r.t. nMSE (lower nMSE means

closer predictions to real values). As such, in the following, we shift our attention

from graph Laplacian regularization to graph representation learning.
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Chapter 5

Temporal Graph-based

Learning for Stock Prediction

In this chapter, we introduce our approach for graph-based learning with

dynamic vertex features. We demonstrate the framework with a stock prediction

task where we have relations between stocks and historical prices (time-series)

as the dynamic stock features.

5.1 Introduction

According to the statistics reported by the World Bank in 2017, the overall

capitalization of stock markets worldwide has exceeded 64 trillion U.S. dollars1.

With the continual increase in stock market capitalization, trading of stocks

has become an attractive investment instrument for many investors. However,

whether an investor could earn or lose money depends heavily on whether he/she

can make the right stock selection. Stock prediction, which aims to predict

the future trend and price of stocks, is one of the most popular techniques to

make profitable stock investment [129], although there are still debates about

whether the stock market is predictable (a.k.a. the Efficient Markets Hypothesis)

among the financial economists [114, 104]. Some recent evidences indicate the

1https://data.worldbank.org/indicator/CM.MKT.LCAP.CD/.
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Table 5.1: An intuitive example of one method that predicts the price
change of stocks more accurately (i.e., smaller MSE) but leads to a
less profitable stock selection (i.e., smaller profit). Method 1 selects
stock A (30) while Method 2 selects stock B (10).

Ground Truth
Method 1 Method 2

Prediction Performance Prediction Performance

A B C A B C MSE Profit A B C MSE Profit
+30 +10 -50 +50 -10 -50 266 30 +20 +30 -40 200 10

A, B, C denote three stocks; numbers (+20) are the true/predicted price change of stocks; values in
bold correspond to suggested selections. MSE is calculated between the prediction and ground-truth
over A, B, and C. Profit is the true movement (ground truth) of the selected stock (e.g., A for Method
1).

predictability of stock markets, which motivates further exploration of stock

prediction techniques [152, 97, 184, 79, 135].

Traditional solutions for stock prediction are based on time-series analysis

models, such as Kalman Filters [174], Autoregressive Models and their extensions

[1]. Given an indicator of a stock (e.g., stock price), this kind of model represents

it as a stochastic process and takes the historical data of the indicator to fit

the process. We argue that such mainstream solutions for stock prediction

have three main drawbacks: 1) The models heavily rely on the selection of

indicators, which is usually done manually and is hard to optimize without

special knowledge of finance. 2) The hypothesized stochastic processes are

not always compatible with the volatility of stock prices in the real world. 3)

These models can only consider a few indicators since their inference complexity

typically increases exponentially with the number of indicators. As such, they

lack the capability to comprehensively describe a stock that could be influenced

by a plethora of factors. To tackle these drawbacks, advanced techniques like

deep neural networks, especially the recurrent neural networks (RNNs), have

become a promising solution to substitute the traditional time-series models to

predict the future trend or exact price of a stock [11, 187, 185, 184].

A state-of-the-art neural network-based solution is the State Frequency Memory

(SFM) network [184], which models the historical data in a recurrent fashion and

captures the temporal patterns in different frequencies. This method achieves

promising performance of predicting the daily opening price of fifty U.S. stocks

one day ahead with a mean square error (MSE) of less than six dollars. However,

we argue that such prediction methods are suboptimal to guide stock selection,
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since their optimization target is not at selecting the top stocks with the highest

expected revenue. To be specific, they typically address stock prediction as

either a classification (on price movement direction) or a regression (on price

value) task, which would cause a large discrepancy on the investment revenue.

Table 5.1 gives an intuitive example, where a method with a better prediction

performance (measured by regression MSE) suggests a less profitable stock. This

implies the possible discrepancy between the actual target of stock selection and

the optimized target of regression (classification), such that an optimal method of

regression (classification) does not necessarily select the optimal stock to trade.

Another limitation of existing neural network-based solutions is that they

typically treat stocks as independent of each other and ignore the relations

between stocks. However, the rich relations between stocks and the

corresponding companies may contain valuable clues for stock prediction. For

example, stocks under the same sector or industry like GOOGL (Alphabet

Inc.) and FB (Facebook Inc.) might have similar long-term trends. Besides,

the stock of a supplier company might impact the stock of its consumer

companies especially when a scandal of the supplier company is reported, such

as the falsification of product quality data. To integrate stock relations into

prediction, an intuitive solution is to represent the stock relations as a graph

and regularize the prediction of stocks based on the graph (i.e., graph-based

learning) [49, 122, 89, 84]. However, conventional graph learning techniques

cannot capture the temporal evolution property of stock markets (e.g., the

strength of influence between two given stocks may vary quickly), since the

graph is fixed at a particular time.

To address the aforementioned limitations of existing solutions, we formulate

stock prediction as a ranking task, for which the target is to directly predict a

stock list ranked by a desired criteria like return ratio. We then propose an end-

to-end framework, named Relational Stock Ranking (RSR), to solve the stock

ranking problem. An illustration of our framework can be found in Figure 5.1.

Specifically, we first feed the historical time series data of each stock to a Long

Short-Term Memory (LSTM) network to capture the sequential dependencies

and learn a stock-wise sequential embedding. By devising a new Temporal Graph

Convolution (TGC), we next revise the sequential embeddings by accounting for
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Figure 5.1: Relational stock ranking framework. It should be noted
that the LSTM cells and FC units (Fully Connected layer) depicted
in the same layer share the same parameters.

stock relations in a time-sensitive way. Finally, we feed the concatenation of

sequential embeddings and relational embeddings to a fully connected layer to

obtain the ranking score of stocks. To justify our proposed method, we employ

it on two real-world markets, New York Stock Exchange (NYSE) and NASDAQ

Stock Market (NASDAQ). Extensive back-testing results demonstrate that our

RSR significantly outperforms SFM [184] with more than 115% improvements

in return ratio.

The key contributions of this work are as follows.

• We propose a novel neural network-based framework, named Relational Stock

Ranking, to solve the stock prediction problem in a learning-to-rank fashion.

• We devise a new component in neural network modeling, named Temporal

Graph Convolution, to explicitly capture the domain knowledge of stock

relations in a time-sensitive manner.
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• We empirically demonstrate the effectiveness of our proposals on two real-

world stock markets, NYSE and NASDAQ.

5.2 Related Work

In addition to graph-based learning, our work is directly related to the recent

works on stock prediction and knowledge graph embedding.

5.2.1 Stock Prediction

Recent work on stock prediction can be separated into two main categories:

stock price regression and stock trend classification. On one hand, Bao et al.

[11] predicted the 1-day ahead closing price of stocks with historical prices as

input. The authors viewed the historical price as a signal and decomposed the

historical price into multiple frequencies with a Wavelet Transform. They then

filtered out noises in the frequency domain with a Stacked Autoencoder (SAE)

and fed the output of SAE to an LSTM to make the prediction. Zhang et al.

[184] devised an extension of LSTM, which decomposes the historical prices into

frequency domain with a Discrete Fourier Transform and equips each frequency

with a memory state to capture the patterns in different frequencies. Instead of

directly modeling the stock prices, Alberg and Lipton [6] used a combination of

an LSTM and Multi-Layer Perception to predict the future trend of fundamental

indicators of a company and trade the corresponding stock based on the predicted

indicators.

On the other hand, Nguyen and Shirai [118] proposed a stock trend classification

solution, which learns a topic distribution representation of each stock from posts

mentioning it on stock message boards, and fed the topic representation into

a Support Vector Machine to make the trend classification. Under a similar

classification setting, another line of research is in classifying the trend of a

stock from relevant financial news reports [135, 42, 41, 187, 79]. For instance,

Zhao et al. [187] achieved it by constructing a event causality network of news

reports and learning news embeddings from the causality networks, which is

fed into a classification layer. Taking financial news as input as well, Hu
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et al. [79] devised a neural network-based solution, named Hybrid Attention

Networks, which leverages a hybrid attention mechanism to attentively fuse

multiple news reports mentioning a stock into a joint representation. In addition,

textual contents mentioning stocks in social medial are also used to forecast the

movement of stocks [98].

However, none of the existing work is able to incorporate the rank/relative order

among stocks regarding the expected revenue. This may lead to suboptimal

stock selections. Moreover, the existing work either totally ignores stock relations

or heuristically models such relations. For instance, an intuitive consideration

of sector-industry relation is to separately train a predictor for stocks under

each sector [134]. To the best of our knowledge, our work is the first to

leverage techniques of learning-to-rank to solve the stock prediction task and

inject the stock relations into the learning framework with a new neural network

component.

5.2.2 Knowledge Graph Embedding

In a similar line, modeling the relations of two entities (a.k.a. knowledge graph

embedding) has been extensively studied in the literature of knowledge graphs.

Bordes, et al. [21] represented entities and relations with embedding vectors and

transferred entity embeddings through adding relation embedding. Similarly,

Socher et al. [139] represented relations as matrices and transferred entity

embeddings by matrix multiplication. Such techniques mainly focus on solving

knowledge graph-oriented problems such as knowledge graph completion, while

we target on a different problem setting of stock ranking. Though the idea of

embedding propagation that revises stock sequential embeddings through stock

relations is partially inspired by TransE, our TGC is more generic in terms of

jointly capturing temporal properties and topologies of relations.
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5.3 Preliminaries

5.3.1 Long Short-Term Memory

LSTM [78] networks have been widely used to process sequential data, such as

the natural language [175], voice [61], and video [143]. LSTM is a special kind of

Recurrent Neural Networks (RNNs) [58] that evolve hidden states through time

to capture the sequential pattern of input data, e.g., the dependency between

words in a sentence. Compared to the vanilla RNN, which is known to suffer

from vanishing gradients while trained with Back-Propagation Through Time

(BPTT), LSTM adds cell states to store the long-term memory and capture the

long-term dependency in a sequence.

Before providing the specific formulation of LSTM, we first describe the terms

associated with LSTM. At each time-step t, xt ∈ RD denotes an input vector

(e.g., embedding vector of the t-th word in a given sentence), where D is the

input dimension. Vectors ct and ht ∈ RU denote the cell (memory) state vector

and the hidden state vector, respectively, where U is the number of hidden units.

Vector zt ∈ RU is an information transformation module. Vectors it, ot, and

f t ∈ RU denote the input, output, and forget gate, respectively. Formally, the

transformation module, state vectors, and controlling gates are defined via the

following equations:

zt = tanh(Wzx
t + Qzh

t−1 + bz)

it = σ(Wix
t + Qih

t−1 + bi)

f t = σ(Wfx
t + Qfh

t−1 + bf )

ct = f t � ct−1 + it � zt

ot = σ(Woxt + Whht−1 + bo)

ht = ot � tanh(ct),

(5.1)

where Wz, Wi, Wf , Wo ∈ RU×D, and Qz, Qi, Qf ∈ RU×U are mapping

matrices; bz, bi, bf , and bo ∈ RU are the bias vectors. The updating formulation

can be understood as performing the following procedures: (1) calculate the

information to be transformed from the input xt to the memory states ct by
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updating zt; (2) update the input gate it to control the information from zt to

ct; (3) update the forget gate f t to decide how much information should be kept

in the memory state; (4) refresh the memory state ct by fusing the information

flows from the input gate and memory gate; (5) update the output gate ot to

regulate the amount of information that can be outputted; and (6) update the

hidden state ht. As can be seen, the memory state ht only has linear adding

interactions, which allows information to be unchanged during BPTT. Benefiting

from the memory state, LSTM is capable of capturing the long-term dependency

in the sequential data.

5.4 Relational Stock Ranking (RSR)

The typical problem setting of stock prediction (i.e., price movement

classification and price regression) is to learn a prediction function ŷt+1 = f(Xt)

which maps a stock from the feature space to the target label space at time-step t.

Matrix Xt = [xt−S+1, · · · ,xt]T ∈ RS×D represents the sequential input features,

where D is the dimension of features at each time-step and S is the length of

the sequence. Distinct from the typical problem setting of stock prediction,

which treats different stocks as independent sequences, our target is to learn a

ranking function r̂t+1 = f(X t), which simultaneously maps a bunch of stocks

to a ranking list. In the learned ranking list, stocks with higher ranking scores

are expected to achieve higher investment revenue at time-step t+ 1. Assuming

that we have N stocks, then X t ∈ RN×S×D = [Xt
1, · · · ,Xt

N]T is the collected

features. In addition, we further associate the problem with a set of explicit

stock relations (e.g., supplier-consumer relations), which reflect the potential

influence between different stocks. Given K types of relations, we encode the

pairwise relation between two stocks as a multi-hot binary vector aij ∈ RK and

represent the relation of all stocks as a tensor A ∈ RN×N×K , of which the entry

at the i-th row and j-th column is aij.

In what follows, we first present the overall solution. We then elaborate our

proposed Temporal Graph Convolution for handling stock relations, followed by

discussing its connections to existing graph-based learning methods.
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5.4.1 Framework

As illustrated in Figure 5.1, RSR contains three layers, named a sequential

embedding layer, a relational embedding layer, and a prediction layer, which

are elaborated as follows.

Sequential Embedding Layer. Considering the strong temporal dynamics

of stock markets, it is intuitive to regard the historical status of a stock as

the most influential factor to predict its future trend. As such, we first apply

a sequential embedding layer to capture the sequential dependencies in the

historical data. Since RNN has achieved significant performance to process

sequential data [175, 143, 61] and demonstrated to be effective in recent stock

prediction research [11, 184], we opt for RNN to learn the sequential embeddings.

Among the various RNN models, such as vanilla RNN, LSTM, and Gated

Recurrent Unit (GRU) [32], we choose LSTM owing to its ability to capture

long-term dependency, which is of great importance to stock prediction. This

is because many factors have long-term effects on a stock, such as the rise of

interest rates, the release of annual reports, a rapid drop in its price, among the

others. For example, if a stock has experienced a very rapid drop in its price,

after that, the stock’s price tends to exhibit an upward trend in the following

days or weeks (a.k.a. the mean reversion phenomenon). As such, we feed the

historical time series data of stock i at time-step t (Xt
i ) to a LSTM network and

take the last hidden state (ht
i ) as the sequential embedding (eti ) of a stock (note

that eti = ht
i ), i.e., we have,

Et = LSTM(X t), (5.2)

where Et = [et1, · · · , etN]T ∈ RN×U denotes the sequential embeddings of all

stocks, and U denotes the embedding size (i.e., U is the number of hidden units

in LSTM).

Relational Embedding Layer. We now consider how to model the influence

between different stocks, especially the ones with explicit relations. Note that it

can be seen as an injection of explicit domain knowledge (i.e., stock relations)

into the data-driven approach for sequential embedding learning. Here we

71



(a) Sector-industry relation (b) Supplier-consumer relation

Figure 5.2: Two examples of stock price history (normalized as
increase ratio as compared to the first depicted trading day) to
illustrate the impact of company relations on the stock price.

present two cases for illustration:

• If two companies are in the same sector or industry, they may exhibit similar

trends in their stock prices, since they tend to be influenced by similar external

events. Figure 5.2(a) shows two example stocks, MSFT (Microsoft Inc.) and

GOOGL (Alphabet Inc.), both of which are in the same sector (Technology)

and industry (Computer Software)2. As can be seen in Figure 5.2(a), the two

stocks exhibit quite similar trends in terms of the change on price in 2017.

Note that the depicted value on each day is the increase ratio at each trading

day as compared to the price on the first observed day (i.e., 09/02/2017).

• If two companies are partners in a supply chain, then the events of the

upstream company may affect the stock price of the downstream company.

Figure 5.2(b) shows an example to demonstrate the impact of such supplier-

consumer relation, which shows the stock price change of Lens Technology Co

Ltd after the release of iPhone 8 (09/22/2017)3. Since the Lens Technology

Co Ltd is the supplier of the screen of iPhone, which was expected to be

selling well, its stock price kept increasing in the following several weeks of

09/22/2017.

To capture such patterns in stock historical data, we devise a new component

of neural network modeling, named Temporal Graph Convolution, to revise the

sequential embeddings according to stock relations. It generates the relational

embeddings Et ∈ RN×U in a time-sensitive (dynamic) way, which is a key

2http://www.nasdaq.com/screening/companies-by-industry.aspx
3https://www.techradar.com/reviews/iphone-8-review
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technical contribution of this work; it will be elaborated later in Section 5.4.2.

Prediction Layer. Lastly, we feed the sequential embeddings and revised

relational embeddings to a fully connected layer to predict the ranking score

of each stock. The ranked list of stocks recommended to buy is then generated

based on the prediction scores.

To optimize the model, we propose an objective function that combines both

pointwise regression loss and pairwise ranking-aware loss:

l(r̂t+1, rt+1) =
∥∥r̂t+1 − rt+1

∥∥2
+ α

N∑
i=0

N∑
j=0

max(0,−(r̂i
t+1 − r̂jt+1)(rt+1

i − rt+1
j )),

(5.3)

where rt+1 = [rt+1
1 , · · · rt+1

N ] and r̂t+1 = [r̂t+1
1 , · · · , r̂t+1

N ] ∈ RN are ground-truth

and predicted ranking scores, respectively, and α is a hyperparameter to balance

the two loss terms. Since we focus on identifying the most profitable stock to

trade, we use the 1-day return ratio of a stock as the ground-truth rather than

the normalized price used in previous work [184]. We will provide more details

on computing the ground-truth in Section 5.5.1 in our data collection.

The first regression term punishes the difference between the scores of ground-

truth and prediction. The second term is pair-wise max-margin loss [188], which

encourages the predicted ranking scores of a stock pair to have the same relative

order as the ground-truth. The similar max-margin loss has been used in several

applications such as recommendation [167] and knowledge based completion

[139], and has been demonstrated to have good performance in ranking tasks.

Minimizing our proposed combined loss will force the prediction ranking scores

to be close to: 1) the return ratios of stocks in terms of absolute values, and 2) the

relative orders of return ratios among stocks, so as to facilitate investors making

better investment decisions. On one hand, the correct relative order of stocks

could help to select the investment targets (i.e., the top ranked stocks). On the

other hand, the accurate prediction of return ratio would facilitate decision on

the timing of investment since the top ranked stocks are valuable targets only

when the return ratios would largely increase.
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5.4.2 Temporal Graph Convolution

Given N stocks with their sequential embeddings Et ∈ RN×U (i.e., the output

of sequential embedding layer) and their multi-hot binary relation encodings

A ∈ RN×N×K , the aim of Temporal Graph Convolution is to learn the revised

embeddings Et ∈ RN×U that encode the relation information. Instead of directly

presenting the formulation of TGC, we detail how we design the component to

shed some lights on its rationale. Lastly, we discuss its connection with existing

graph-based learning methods.

a) Uniform Embedding Propagation. Our first inspiration comes from link

analysis research, where in a graph, the impact of a vertex on another one can be

captured by propagating information on the graph. A well-known example is the

PageRank [125] method that propagates the importance score of a vertex to its

connected vertices. Since a stock relation encodes certain similarity information

between two connected stocks, we consider relating their embeddings through a

similar propagation process as in link analysis:

eti =
∑

{j|sum(aji)>0}

1

dj
etj , (5.4)

where sum(aji) is the sum of all elements in the relation vector aji (recall

that aji is a multi-hot binary vector where each element denotes whether the

corresponding type of relation exists between j and i). The condition sum(aji) >

0 ensures that only stocks have at least one relation will be considered. dj is the

number of stocks satisfying the condition sum(aji) > 0. After such a propagation

in the embedding space, the relational embedding eti encodes the impacts coming

from other stocks that have relations with stock i at time t.

b) Weighted Embedding Propagation. Considering that different relations

between two stocks may have varying impacts on their prices, we apply a non-

uniform coefficient when propagating the embeddings:

eti =
∑

{j|sum(aji)>0}

g(aji)

dj
etj , (5.5)
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where g(aji) is a mapping function that aims to learn the impact strength of the

relations in aji, and we term it as the relation-strength function. As an example,

suppose we have two relations named supplier customer and same industry,

and three stocks j, i, and k. Given that stock j is a supplier of stock i while

stock k is in the same industry as stock i, we can encode their relations as

two different vectors: aji = [1, 0] and aki = [0, 1]. We can see that by feeding

different relation vectors into a learnable relation-strength function for different

stock pairs, we allow the embedding propagation process to account for both the

topology of relation graph and the semantics of relations.

c) Time-aware Embedding Propagation. A limitation of the above

weighted propagation process is that the relation-strength function returns a

fixed weight for a given relation vector aji regardless the evolution across different

time-steps. As stock market is highly dynamic such that the status of a stock

and the strength of a relation are continuously evolving, the assumption that a

relation vector has a static weight limits its modeling fidelity. For instance, in

the previous example of Figure 5.2(b), the supplier customer relation between

Apple Inc. and Lens Technology Co Ltd has a larger impact on Lens’s stock

price in the period of releasing new version of iPhone than usual. To address

this limitation, we propose to encode the temporal information into the relation-

strength function and define the Time-aware Embedding Propagation process as

follows:

eti =
∑

{j|sum(aji)>0}

g(aji, e
t
i , e

t
j )

dj
etj , (5.6)

which takes the sequential embeddings (note that they are time-sensitive) into

account to estimate the strength of a relation. Besides encoding the temporal

information, another benefit of such a design is that the sequential embedding

also encodes the stock information. This allows the relation-strength function to

estimate the impact of a relation vector based on the stocks of concern, which is

very desirable.

Next we describe two designs of the time-sensitive relation-strength function,

which differ in whether to model the interaction between two stocks in an explicit
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or implicit manner.

• Explicit Modeling. For the explicit model, we define the relation strength

function as:

g(aji, e
t
i , e

t
j ) = eti

T
etj︸ ︷︷ ︸

similarity

× φ(wTaji + b)︸ ︷︷ ︸
relation importance

, (5.7)

where w ∈ RK and b are model parameters to be learned; and φ is an activation

function4. The relation strength of aji is determined by two terms – similarity

and relation importance. Specifically, the first term measures the similarity

between the two stocks at the current time-step. The intuition is that the

more similar the two stocks are at the current time, it is more likely that their

relations will impact their prices in the near future. We use inner product to

estimate the similarity, inspired by its effectiveness in modeling the similarity

(interaction) between two entities (embeddings) in Collaborative Filtering [75].

The second term is a nonlinear regression model on the relations, where each

element in w denotes the weight of a relation in general and b is a bias term.

Since both terms of this function are directly interpretable, we call it Explicit

Modeling.

• Implicit Modeling. In this design, we feed the sequential embeddings

and the relation vector into a fully connected layer to estimate the relation

strength:

g(aji, e
t
i , e

t
j ) = φ(wT [eti

T
, etj

T
,aji

T ]T + b), (5.8)

where w ∈ R2U+K and b are model parameters to be learned; φ is an activation

function same as the one in Equation (5.8). Then we normalize the outputs

using a softmax function, which also endows it with more non-linearities. Since

this way of interaction is implicitly captured by the parameters, we call it

Implicit Modeling.

4Note that we employ the leaky rectifier [106] with a slope of 0.2 as the activation function in
our implementation.
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5.5 Data Collection

Most existing works evaluate stock prediction on dozens of stocks, and

therefore lacks a large-scale stock dataset for extensive evaluations. As such,

we decide to construct a large-scale data by ourselves, which is accessible

through: https://github.com/hennande/Temporal Relational Stock Ranking.

Specifically, we collect the stocks from the NASDAQ and NYSE markets that

have transaction records between 01/02/2013 and 12/08/2017, obtaining 3, 274

and 3, 163 stocks respectively. Note that we select these two markets for their

representative properties: NASDAQ is more volatile, whereas NYSE is more

stable [136]. Furthermore, we perform a filtering on the stocks by retaining the

stocks satisfying the two conditions that: 1) they have been traded on more than

98% of trading days since 01/02/2013; and 2) they have never been traded at less

than five dollars per share during the collection period. It should be noted that

the first condition is based on concerns that intermittent sequences may bring in

abnormal patterns; while the second condition ensures that the selected stocks

are not penny stocks5, which are too risky for general investors as suggested by

the U.S. Securities and Exchange Commission. This results in 1, 026 NASDAQ

and 1, 737 NYSE stocks for our experiments. For these stocks, we collect three

kinds of data: 1) historical price data and 2) Wiki relations between their

companies such as supplier-consumer relation and ownership relation. Next,

we present the details of these data.

5.5.1 Sequential Data

Following [184], we set the prediction frequency at daily-level. Under our

problem formulation, we aim to predict a ranking list of stocks for the following

trading day, based on the daily historical data of the last S trading days.

As the return ratio of a stock indicates the expected revenue of the stock,

we set the ground-truth ranking score of stock i as its 1-day return ratio

rt+1
i = (pt+1

i − pti)/pti where pti is the closing price at day t. To calculate the

ground-truth, we first collect the daily closing price of each stock ranging from

01/02/2013 and 12/08/2017. After the collection, we normalize the price of

5https://www.sec.gov/fast-answers/answerspennyhtm.html
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Table 5.2: Statistics of the sequential data.

Market Stocks#
Training Days#

01/02/2013
12/31/2015

Validation Days#
01/04/2016
12/30/2016

Testing Days#
01/03/2017
12/08/2017

NASDAQ 1,026 756 252 237
NYSE 1,737 756 252 237

Table 5.3: Statistics of Wiki relation data in the NASDAQ and NYSE
datasets.

Wiki Relation
Relation Types# Relation Ratio (Pairwise)

NASDAQ 42 0.21%
NYSE 32 0.30%

each stock by dividing it by its maximum value throughout the entire 2013-

2017 dataset. In addition to the normalized closing price, we calculate four

more sequential features, i.e., the 5, 10, 20, and 30 days moving averages

which represent the weekly and monthly trends. Following existing works of

stock prediction [184], we chronologically separate the sequential data into

three time periods for training (2013-2015), validation (2016), and evaluation

(2017), respectively, and summarize the basic statistics in Table 5.2. As can be

seen, there are 756, 252, and 237 trading days in the training, validation, and

evaluation set, respectively.

5.5.2 Wiki Company-based Relations

As rich sources of entity relations, knowledge bases contain company entities and

company relations, which might reflect the impact across stocks. As such, we

extract the first-order and second-order company relations from Wikidata [156],

one of the biggest and most active open domain knowledge bases with more than

42 million items (e.g., Alphabet Inc.) and 367 million statements (e.g., Alphabet

Inc.; founded by; Larry Page) in the format of (subject; predicate; object)6. As

shown in Figure 5.3, company i has a first-order relation with j if there is a

statement that has i and j as the subject and object, respectively. Companies

i and j have a second-order relation if they have statements sharing the same

object, such as Boeing Inc. and United Airlines, Inc. have different statements

linking to Boeing 747. After an exhausted exploration of a recent dump of

Wikidata (01/05/2018), we obtain 5 and 53 types of first-order and second-order

relations, respectively7. The detailed description of these relations is elaborated

6https://www.mediawiki.org/wiki/Wikibase/DataModel/JSON
7We manually filter out less informative relations such as located at the same timezone.
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Google 
LLC

Alphabet 
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Parent 
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Citigroup
Inc.

BlackRock
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Boeing 
Inc.

United 
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Item 
operated

(a) First-order relation (b) Second-order relation

Figure 5.3: Examples of the first-order and second-order company
relations extracted from Wikidata.

in Section A.1 at the end of this thesis proposal. We then summarize the count of

relation types and the ratio of stock pairs with at least one Wiki company-based

relation in Table 5.3. As can be seen, there are 42 and 32 types of company

relations occurring between stock pairs in NASDAQ and NYSE, respectively.

5.6 Experiment

To the best of our knowledge, our work is the first study to incorporate stock

relations into the models for stock prediction, especially neural network-based

ones. As such, in this section, we conduct experiments with the aim of answering

the following research questions:

1. RQ1: How is the utility of formulating stock prediction as a ranking task

as compared to the state-of-the-art stock prediction solutions in regression

formulation?

2. RQ2: Do stock relations enhance the neural network-based solution for

stock prediction? How is the effectiveness of our proposed TGC component

compared to conventional graph-based learning?

3. RQ3: How does our proposed RSR solution perform under different back-

testing strategies?

5.6.1 Experimental Setting

Evaluation Protocols. Following [43], we adopt a daily buy-hold-sell trading

strategy to evaluate the performance of stock prediction methods regarding the

revenue. On each trading day t+ 1 during the testing period (from 01/03/2017

to 12/08/2017), we simulate a trader using a stock prediction method to trade
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in the following way:

1. When the market closes on day t: The trader uses the method to get

the prediction, a ranking list with predicted return ratio of each stock. The

trader buys the stock with the highest expected revenue (i.e., top-1).

2. When the market closes on trading day t+1: The trader sells the stock

purchased on day t.

In calculating the cumulative investment return ratio, we follow several simple

assumptions: (1) The trader spends the same amount of money (e.g., 50

thousand dollars) on every trading day. We make this assumption to eliminate

the temporal dependency of the testing procedure for a fair comparison. (2) The

market is always sufficiently liquid such that the buying order gets filled at the

closing price of day t and the selling price is the closing price of day t + 1. (3)

The transaction costs are ignored since the costs for trading US stocks through

brokers are quite cheap no matter charging by trades or shares. For instance,

Fidelity Investments and Interactive Brokers charge only 4.95 dollars per trade

and 0.005 dollar per share, respectively8.

Since the target is to accurately predict the return ratio of stocks and

appropriately rank the relative order of stocks, we employ three metrics,

Mean Square Error (MSE), Mean Reciprocal Rank (MRR), and the cumulative

investment return ratio (IRR), to report the model performance. MSE has

been widely used for evaluating regression tasks such as stock price prediction

[92, 115, 184]. We thus calculate the MSE over all stocks on every trading

day within the testing period. MRR [141] is a widely used metric for ranking

performance evaluation. Here, we calculate the average reciprocal rank of the

selected stock over the testing days. Since directly reflecting the effect of stock

investment, IRR is our main metric, which is calculated by summing over the

return ratios of the selected stock on each testing day. Smaller value of MSE

(≥ 0) and larger value of MRR ([0, 1]) and IRR indicate better performance. For

each method, we repeat the testing procedure five times and report the average

performance to eliminate the fluctuations caused by different initializations.

8https://www.stockbrokers.com/guides/commissions-fees
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Methods. We compare with the following stock price prediction baselines with

regression formulation:

• SFM [184]: This method is the state-of-the-art stock price prediction method.

It takes the historical closing prices as input and decomposes the prices into

signals of different frequencies with a Discrete Fourier Transform (DFT).

It then feeds the DFT coefficients into an extended LSTM with separate

memory states for different frequencies to learn the frequency-aware sequential

embeddings, which are fed into a FC layer to make the prediction.

• LSTM [11]: This method is the vanilla LSTM, which operates on the

sequential data including closing prices and moving averages of 5, 10, 20,

and 30 days, to obtain a sequential embedding; and then a FC layer is used

to make prediction of the return ratio.

It should be noted that we ignore the potential baselines based on time-series

models and shallow machine learning models, since they have been reported to

be less effective than SFM and LSTM in several previous works [184, 11, 79].

Moreover, we also compare with several methods with ranking formulation:

• Rank LSTM: We remove the relational embedding layer of the proposed

RSR to obtain this method, i.e., this method ignores stock relations.

• Graph-based ranking (GBR): We add the graph regularization term to the

loss function of Rank LSTM, which smooths predicted return ratios over

the graph of stock relations. In the graph, we connect a pair of vertices (i.e.,

stocks) having at least one type of relations.

• GCN [89]: GCN is the state-of-the-art graph-based learning method. We

obtain this method by replacing the TGC layer of our proposed RSR with a

GCN layer. The graph of stock relations in GBR is fed into the GCN layer.

• RSR E: One case of our proposed RSR with explicit modeling of stock relation

(Equation (5.7)) in the TGC layer.

• RSR I: Another case of RSR with implicit modeling of stock relation

(Equation (5.8)) in the TGC layer.
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Table 5.4: Performance comparison between the solutions with
regression formulation (SFM and LSTM) and ranking formulation
(Rank LSTM) on the NASDAQ and NYSE datasets.

NASDAQ NYSE
MSE MRR IRR MSE MRR IRR

SFM 5.20e-4±5.77e-5 2.33e-2±1.07e-2 -0.25±0.52 3.81e-4±9.30e-5 4.82e-2±4.95e-3 0.49±0.47
LSTM 3.81e-4±2.20e-6 3.64e-2±1.04e-2 0.13±0.62 2.31e-4±1.43e-6 2.75e-2±1.09e-2 -0.90±0.73

Rank LSTM 3.79e-4±1.11e-6 4.17e-2±7.50e-3 0.68±0.60 2.28e-4±1.16e-6 3.79e-2±8.82e-3 0.56±0.68

Rank LSTM, RSR E, and RSR I are different variants of our method.

Rank LSTM is used to compare with existing stock prediction methods to

answer RQ1. RSR E and RSR I are compared with the existing graph

Laplacian regularization method (GBR) and the graph representation learning

method (GCN) to answer RQ2.

Parameter Settings. We implement the models with TensorFlow9 except

SFM of which we use the original implementation10. We employ grid search

to select the optimal hyperparameters regarding IRR for all methods. For

SFM, we follow the original setting in [184], optimizing it by RMSProp with a

learning rate of 0.5, and tuning the number of frequencies and hidden units

within {5, 10, 15} and {10, 20, 30}, respectively. For all other methods, we

apply the Adam [87] optimizer with a learning rate of 0.001. We tune two

hyperparameters for LSTM, the length of sequential input S and the number of

hidden units U , within {2, 4, 8, 16} and {16, 32, 64, 128}, respectively. Besides S

and U , we further tune α in Equation (5.3), which balances the point-wise and

pair-wise terms; specifically, we tune α within {0.1, 1, 10} for Rank LSTM,

GCN, RSR E, and RSR I. We further tune the λ of the regularization term

in GBR within {0.1, 1, 10}. Note that we report the average performance of five

different runs.

5.6.2 Study of Stock Ranking Formulation (RQ1)

We first investigate whether stock ranking is a promising formulation for

stock prediction by comparing the performance of methods that only consider

sequential features (i.e., without consideration of stock relations). Table 5.4

summarizes the performance of the baselines in regression fashion and our basic

Rank LSTM model for stock ranking w.r.t. MSE, MRR, and IRR. From the

Table, we have the following observations:

9https://www.tensorflow.org/
10https://github.com/z331565360/State-Frequency-Memory-stock-prediction
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(a) NASDAQ (b) NYSE

Figure 5.4: Performance comparison of Rank LSTM, SFM, and
LSTM regarding IRR.

• Rank LSTM outperforms both SFM and LSTM on the two markets with

great improvement w.r.t. IRR (>14%). It verifies the advantage of the

stock ranking solutions and answers RQ1 that stock ranking is a promising

formulation for stock prediction. Moreover, it indicates the potential of

advanced learning-to-rank techniques in solving the stock prediction task.

• However, Rank LSTM fails to consistently beat SFM and LSTM regarding

all evaluation measures, its performance on NYSE w.r.t. MRR is worse than

SFM. The reason could be attributed to minimizing the combination of point-

wise and pair-wise losses, which would lead to a tradeoff between accurately

predicting absolute value of return ratios and their relative order.

• The performance w.r.t. IRR varies a lot under different runs of a method. It

is reasonable since the absolute value of daily return ratio varies from 0 to

0.98 in our dataset, which means that a tiny switch of the top 2 ranked stocks

may lead to a huge change of the IRR. Such results also indicate that there is

a need for further study on the learning to rank techniques that emphasizes

the top-ranked stocks

• The performance of LSTM on the NYSE market w.r.t. IRR is unexpectedly

bad. We repeat the parameter tuning and testing procedure several times and

find that LSTM could achieve better performance (with IRR value between

0.1 and 0.2) with other settings of hyperparameters. However, the selected

setting always beats the others on the validation. This result indicates the

potential difference between the validation and testing.

Figure 5.4 illustrates the procedure of back-testing regarding the cumulative
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return ratios. As can be seen, in all cases, the curves are volatile, which indicates

that selecting only one stock from more than 1,000 is a highly risky operation.

Consequently, it also suggests the importance of introducing risk-oriented criteria

into stock ranking tasks in the future.

5.6.3 Impact of Stock Relations (RQ2)

We next study the whether stock relations are helpful for stock ranking. Table

5.5 shows the results of considering the Wiki relation of stocks. From the Table,

we observe that:

• In most cases, methods that incorporate stock relations, i.e., GBR,

GCN, RSR E, and RSR I, outperform Rank LSTM w.r.t. IRR. Since

Rank LSTM is the building block of the other compared methods, this result

indicates that encoding stock relations would lead to more accurate ranking

of stocks and facilitate profitable investment.

• In all cases, our proposed framework RSR with either explicit modeling or

implicit modeling of stock relations (i.e., RSR E and RSR I) achieve better

performance than GBR and GCN w.r.t. IRR. Note that the key difference

is that RSR E and RSR I encode stock relations with the proposed TGC

component instead of conventional graph-based learning techniques used in

GBR and GCN. As such, this result validates the effectiveness of the TGC

component, which models local smoothness in a time-sensitive manner.

• We observe that the performance of different methods w.r.t. different

evaluation measures is inconsistent. In most cases, the performance of different

methods is comparable to each other w.r.t. MSE and MRR while various in a

wide range w.r.t. IRR. We speculate the reason as tuning the hyperparameters

w.r.t. IRR, which focuses more on correct ranking on testing days with high

return ratios. For instance, the correct prediction on a trading day with ground

truth return ratio of 0.5 would lead to higher IRR than the correct predictions

in ten trading days with a return ratio of 0.01. As such, a model that achieves

better IRR could achieve suboptimal MSE and MRR.
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Table 5.5: Performance comparison among relational ranking methods
with Wiki relations on the NASDAQ and NYSE datasets.

NASDAQ NYSE
MSE MRR IRR MSE MRR IRR

Rank LSTM 3.79e-4±1.11e-6 4.17e-2±7.50e-3 0.68±0.60 2.28e-4±1.16e-6 3.79e-2±8.82e-3 0.56±0.68

GBR 3.80e-4±2.40e-7 3.32e-2±4.50e-3 0.33±0.34 2.26e-4±4.20e-7 3.64e-2±5.35e-3 0.65±0.27
GCN 3.79e-4±9.70e-7 3.24e-2±3.21e-3 0.11±0.06 2.26e-4±6.60e-7 3.99e-2±1.03e-2 0.74±0.30

RSR E 3.80e-4±7.20e-7 3.94e-2±8.15e-3 0.81±0.85 2.29e-4±2.77e-6 4.28e-2±6.18e-3 0.96±0.47
RSR I 3.79e-4±6.60e-7 4.09e-2±5.18e-3 1.19±0.55 2.26e-4±1.37e-6 4.58e-2±5.55e-3 0.79±0.34

(a) NASDAQ (b) NYSE

Figure 5.5: Comparison on back-testing strategies (Top1, Top5, and
Top10) w.r.t. IRR based on the prediction of RSR I.

5.6.4 Study on Back-testing Strategies (RQ3)

We next investigate the performance of our proposed methods under three

different back-testing strategies, named Top1, Top5, and Top10, buying stocks

with top-1, 5, 10 highest expected revenue, respectively. For instance, with the

back-testing strategy of Top10, we equally split our budget to trade the top-

10 ranked stocks on each testing day. Note that we accordingly calculate the

IRR by averaging the return ratio of the 10 selected stocks on each testing day.

Figure 5.5 illustrates the performance comparison of these strategies using the

predictions of RSR I only, which implicitly models stock relations. We select

RSR I instead of RSR E for the reason that the result of RSR I is more stable

(smaller standard deviation as shown in Table 5.5). From Figure 5.5, we have

the following observations:

• In the other cases, the performance of Top1, Top5, and Top10 on most

testing days follows the order of Top1 > Top5 > Top10, i.e., Top1 and

Top10 achieve the highest and lowest IRR, respectively. The reason could be

that the ranking algorithm could accurately rank the relative order of stocks

regarding their future return ratios. Once the order is accurate, buying and

selling the stock with higher expected profit (e.g., the top-1 ranked one) would

achieve higher cumulative return ratio.
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• Under the back-testing strategy Top1, the curve of IRR has sharper

fluctuations that those of Top5 and Top10. This result indicates that Top1

would be a risky investment strategy, i.e., it would lead to large changes

w.r.t. return ratios. In other words, for risk-sensitive stock investors, it is

suggested to trade on the Top-5 and Top-10 ranked stocks to distribute the

risk. Furthermore, this result suggests the need for further study on the joint

modeling of return ratio and risk in stock prediction.

To further investigate the effectiveness of the proposed method in facilitating

stock trading, we further compare the back-testing performance of our method

with the following baselines:

• S&P500: The Standard & Poor’s 500 Index is a composite market index of

500 U.S. stocks with the largest capitalization. Note that following market

index is a strong investment strategy in U.S. stock market11.

• DJI: Dow Jones Industrial Average Index is another widely referred composite

market index in the U.S. stock market.

• Market: It is one of the ideal investment strategies, which trades stocks with

the highest return ratio (e.g., Top10) in the testing period from the whole

market. It should be noted that we rank stocks by return ratios calculated

from the prices on the last day and the first day of the testing period.

• Selected: It is another ideal investment strategy that selects the stocks with

the highest return ratio among the stocks traded by the proposed method in

the testing period.

Table 5.6 shows the performance of the compared investment strategies w.r.t.

IRR. From the results, we have the following observations:

• In the testing period, S&P500 and DJI increase about twenty percent which

indicates that the stock market is bullish. Considering that it would be easier

to achieve better performance w.r.t. IRR in a bullish market, it suggests the

future exploration of the proposed method in a bearish market.

11From 2008 to 2017, the S&P 500 achieved a return ratio of 125.8%, beating most of the
portfolios of hedge funds.
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Table 5.6: Performance of RSR I as compared to market indices and
ideal investment strategies w.r.t. IRR.

NASDAQ NYSE
Top1 Top5 Top10 Top1 Top5 Top10

RSR I 1.19 0.40 0.27 1.06 0.18 0.26

Market 3.40 2.36 1.99 2.42 1.90 1.47
Selected 1.63 0.81 1.10 2.24 1.78 1.39

S&P 500 0.17
DJI 0.22

• Our proposed method achieves a higher IRR as compared to S&P500 and

DJI in all the cases. Since following market indices are competitive investment

strategies, this result validates the effectiveness of the proposed method.

• The performance of the proposed method presents a significant gap below

Market and Selected. This result is acceptable since to accurately select

the stocks that perform the best in a testing of one year is a very difficult

problem. Furthermore, it also presents a great opportunity for research of

stock prediction methods.

5.7 Conclusions

In this work, we formulated stock prediction as a ranking task and demonstrated

the potential of employing the learning-to-rank methods for predicting stocks.

To tackle the problem, we proposed a Relational Stock Ranking framework.

The core of the framework is a neural network modeling component, named

Temporal Graph Convolution, which can handle the impact among different

stocks by encoding stock relations in a time-sensitive way. Note that the TGC

extends existing graph convolution models by enabling the modeling of temporal

vertex features. Experimental results on NASDAQ and NYSE demonstrate the

effectiveness of our solution — the RSR framework outperforms two well known

market indices S&P 500 and DJI with significantly higher return ratio.
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Chapter 6

Dynamic Local Smoothness via

Graph Adversarial Training

In this chapter, we introduce our graph adversarial training method, which

stabilize the promising graph neural networks by encouraging the model to

defense adversarial perturbations propagated over graph.

6.1 Introduction

Owing to the extraordinary representation ability, deep neural networks become

prevalent models for graph-based learning [176, 157, 89, 119, 155]. Despite

promising performance, we argue that graph neural networks are vulnerable to

small but intentional perturbations on the input features [197], and this could be

even more serious than the standard neural networks that do not model graph

structure. The reasons are twofold: 1) graph neural networks also optimize the

supervised loss on labeled data, thus it will face the same vulnerability issue as

the standard neural networks [60], and 2) the additional smoothness constraint

will exacerbate the impact of perturbations, since smoothing across connected

nodes1 would aggregate the impact of perturbations from nodes connected to

the target node (i.e., the node that we apply perturbations with the aim of

changing its prediction). Figure 6.1 illustrates the impact of perturbations on

1In the following sections, we interchangeably use node and example.
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Figure 6.1: An intuitive example to illustrate the impact of applying
perturbations in the input node features to the prediction of graph
neural networks. Here the model implements the graph smoothness
constraint via propagating node embeddings over the graph. On
the right, the model propagates the applied perturbations on the
connected nodes of the target node 3, leading to a wrong prediction.
Moreover, the perturbations on node 1 and 2 directly lead to the
wrong associated predictions like in the standard neural networks.

node features with an intuitive example of a graph with 4 nodes. A graph neural

network model predicts node labels (3 in total) for both the clean input features

and features with applied perturbations, respectively. Here perturbations are

intentionally applied to the features of nodes 1, 2, 4. Consequently, the graph

neural network model is fooled to make the wrong predictions on nodes 1 and 2 as

with standard neural networks. Moreover, by propagating the node embeddings,

the model aggregates the perturbations to node 3, from which its prediction is

also affected. In real-world applications, small perturbations like the update of

node features may frequently happen, but should not change the predictions

much. As such, we believe that there is a strong need to stabilize the graph

neural network models during training.

Adversarial Training (AT) is a dynamic regularization technique that proactively

simulates the perturbations during the training phase [60]. It has been

empirically shown to be able to stabilize neural networks, and enhance their

robustness against perturbations in standard classification tasks [93, 111].

Therefore, employing a similar approach to that of AT on a graph neural

network model would also be helpful to the model’s robustness. However, directly

employing AT on graph neural network is insufficient, since it treats examples

as independent of each other and does not consider the impacts from connected

examples. As such, we propose to investigate a new adversarial training method,

named Graph Adversarial Training (GAT), which learns to construct and resist

perturbations by taking the graph structure into account.
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The key idea of GAT is that, when generating perturbations on a target example,

it maximizes the divergence between the prediction of the target example and

its connected examples. That is, the adversarial perturbations would attack

the graph smoothness constraint as much as possible. Then, GAT updates

model parameters by additionally minimizing a graph adversarial regularizer,

aiming to reduce the prediction divergence between the perturbed target example

and its connected examples. Through this way, GAT can resist the worst-

case perturbations on graph-based learning and enhance model robustness. To

efficiently calculate the adversarial perturbations, we further devise a linear

approximation method based on back-propagation.

To demonstrate GAT, we employ it on a well-established graph neural network

model, Graph Convolutional Network (GCN) [89], which implements the

smoothness constraint by performing embedding propagation. We study the

method’s performance on node classification, one of the most popular tasks

on graph-based learning. Extensive experiments on three public benchmarks

(two citation graphs and a knowledge graph) verify the strengths of GAT. As

compared to normal training on GCN, GAT leads to 4.51% improvement in

accuracy. Moreover, the improvements on less popular nodes (with a small

degree) are more significant, highlighting the necessity of performing AT with

the graph structure considered.

The main contributions of this work are summarized as:

• We formulate Graph Adversarial Training, a new optimization method for

graph neural networks that can enhance the model’s robustness against

perturbations on node input features.

• We devise a graph adversarial regularizer that encourages the model to

generate similar predictions on the perturbed target example and its connected

examples, and develop an efficient algorithm to construct perturbations.

• We demonstrate the effectiveness of GAT on GCN, conducting experiments

on three datasets which show that our method could achieve state-of-the-art

performance for node classification.
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6.2 Related Work

In addition to graph-based learning, the existing research on adversarial learning

is closely related to this work.

6.2.1 Adversarial Learning

Adversarial Training. In order to tackle the vulnerability to intentional

perturbations of deep neural networks, researchers have proposed adversarial

training which is an alternative minimax process [145]. The adversarial training

methods augment the training process by dynamically generating adversarial

examples from clean examples with perturbations to maximally attack the

training objective, and then learn over these adversarial examples by minimizing

an additional regularization term [113, 171, 60, 111, 112, 100, 149, 130]. The

adversarial training methods mainly fall into two categories: supervised and

semi-supervised ones, regarding the target of the training objective. In the

supervised learning tasks such as visual recognition [60], supervised loss [113, 171,

60] and its surrogates [100, 149, 130] over adversarial examples are designed as

the target of the maximization and minimization. For semi-supervised learning

where partial examples are labeled, divergence of predictions for inputs around

each examples is adopted as the target. Generally speaking, the philosophy

of adversarial training methods is to smooth the prediction around individual

inputs in a dynamical fashion.

Our work is inspired by these adversarial training methods. In addition to the

local smoothness of individual examples, our method further accounts for relation

between examples (i.e., the graph structure) in the target of the minimax process

so as to learn robust classifiers that is able to predict smoothly over the graph

structure. To the best of our knowledge, this is the first attempt to incorporate

graph structure in adversarial training.

Another emerging research topic related to our work is the generation of

adversarial perturbations to attack the neural graph-based learning models

where [35] and [197] are the only published work. However, methods in [35]

and [197] are not suitable for constructing adversarial examples in graph
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adversarial training. This is because these methods generate a new graph as

the adversarial example for each individual node, i.e., they would generate N

graphs when the number of nodes is N leading to unaffordable memory overhead.

In this work, we devise an efficient method to generate adversarial examples for

graph adversarial training.

Generative Adversarial Networks. Generative adversarial networks (GAN)

is a machine learning framework with two different networks as a generator and a

discriminator playing minimax game on generating and detecting fake examples.

Recently, several GAN-based models are proposed to learn graph embeddings,

which either generate fake nodes and edges to augment embedding learning [159,

40] or smooth the leaned embeddings to follow a prior distribution [133, 181,

126, 36]. However, using two different networks inevitably doubles the loads

of computation of model training and the tuning of parameters of GAN-based

methods. Moreover, for different applications, one may need to build GAN from

scratch, whereas our method is a generic solution that can be seamlessly applied

to enhance the existing graph neural network models with less computing and

tuning overhead.

6.3 Methodology

In this section, we first introduce the formulation of graph adversarial training,

followed by the introduction of GATV, an extension of GAT, which incorporates

the virtual adversarial regularization [112]. We then present two solutions for the

node classification task, GCN-GAT and GCN-GATV, which employ GAT and

GATV to train GCN [89], respectively. Finally, we analyze the time complexity

of the two solutions and present the important implementation details.

6.3.1 Graph Adversarial Training

Recent advances of adversarial training (AT) has been successful in learning deep

neural network-based classifiers, making them robust against perturbations for a

wide range of standard classification tasks such as visual recognition [60, 93, 112]

and text classification [111]. Generally, applying AT would regulate the model
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parameters to smooth the output distribution. Specifically, for each clean

example in the dataset, adversarial training encourages the model to assign

similar outputs to the artificial input (i.e., the adversarial example) derived from

the clean example. Inspired by the philosophy of standard AT, we develop graph

adversarial training, which trains graph neural network modules in the manner

of generating adversarial examples and optimizing additional regularization

terms over the adversarial examples, so as to prevent the adverse effects of

perturbations. Here the focus is to prevent the perturbations propagated through

the node connections (as illustrated in Figure 6.1), i.e., accounting for graph

structure in adversarial training.

Generally, the formulation of graph adversarial training is:

min: ΓGAT = Γ + β
N∑
i=1

∑
j∈Ni

D(f(xi + rgi , G|Θ), f(xj , G|Θ)),

max: rgi = arg max
ri,‖ri‖≤ε

∑
j∈Ni

D(f(xi + ri, G|Θ̂), f(xj , G|Θ̂)), (6.1)

where ΓGAT is the training objective function with two terms: the standard

objective function of the origin graph-based learning model (e.g., a classification

loss) and graph adversarial regularizer. The second term encourages the graph

adversarial examples to be classified similarly as the connected examples where

Θ denotes the parameters to be learned, and D is a nonnegative function that

measures the divergence (e.g., Kullback-Leibler divergence [85]) between the two

predictions. rgi denotes the graph adversarial perturbation, which is applied to

the input feature of the clean example i to construct a graph adversarial example.

The graph adversarial perturbation is calculated by maximizing the graph

adversarial regularizer under current value of model parameters. That is to say,

the graph adversarial perturbation is the direction of change on the input feature,

which can maximally attack the graph adversarial regularizer, i.e., the worst

case of perturbations propagated from neighbor nodes. ε is a hyperparameter

controling the magnitude of perturbations, which is typically set to small values

so that the feature distribution of adversarial examples is close to that of the

clean examples.
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Similar to the standard adversarial training, each iteration of GAT can also be

viewed as playing a minimax game:

• Maximization: GAT generates graph adversarial perturbations from clean

examples, which break the smoothness between the connected nodes to the

maximum extent, and then constructs graph adversarial examples by adding

the perturbations to the input of associated clean examples.

• Minimization: GAT minimizes the objective function of the graph neural

network with an additional regularizer over graph adversarial examples, by

encouraging smoothness between predictions of adversarial examples and

connected examples. As such, the model becomes robust against perturbations

propagated through the graph.

While the traditional graph-based regularizations (e.g., the graph Laplacian

term) also encourage the smoothness of predictions over the graph structure,

GAT is believed to be a more advanced regulation for two reasons: 1) the

regularization performed by GAT is dynamic since the adversarial examples

are adaptively generated according to the current parameters and predictions of

the model whereas the standard graph-based regularizations are static; and 2)

GAT to some extent augments the training data, since the generated adversarial

examples would not have occurred in the training data, which would be beneficial

to model generalization.

Approximation. It is non-trivial to obtain the closed-form solution of rgi .

Inspired by the linear approximation method proposed in [60] for standard

adversarial training, we also design a linear approximation method to calculate

the graph adversarial perturbations in GAT, of which the formulation is:

rgi ≈ ε
g

‖g‖
, where g = ∇xi

∑
j∈Ni

D(f(xi, G|Θ̂), f(xj , G|Θ̂)), (6.2)

where g is the gradient w.r.t. the input xi. For graph neural network models,

the gradient can be efficiently calculated by one backpropagation. Note that Θ̂

is a constant set denoting the current model parameters.
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6.3.2 Virtual Adversarial Training

Considering that node classification is a task of semi-supervised learning

by nature, we further devise an extended version of GAT (GATV), which

additionally smooths the distribution of predictions around each clean example

to further enhance the model robustness. Inspired by the idea of virtual

adversarial training [112], we further add a virtual adversarial regularizer into

the training objective function and construct virtual adversarial examples to

attack the local smoothness of predictions. The formulation of GATV is:

min: ΓGATV = Γ + α
N∑
i=1

D(f(xi + rvi , G|Θ), ỹi)︸ ︷︷ ︸
virtual adversarial regularizer

+

β
N∑
i=1

∑
j∈Ni

D(f(xi + rgi , G|Θ), f(xj , G|Θ))︸ ︷︷ ︸
graph adversarial regularizer

,

max: rvi = arg max
r′i,‖r′i‖≤ε′

D(f(xi + r′i, G|Θ̂), ỹi), (6.3)

where r′i denotes the virtual adversarial perturbation, the direction that leads

to the largest change on the model prediction of xi. For labeled nodes and

unlabeled nodes, ỹi denotes both the ground truth label and model prediction,

as follows:

ỹi =


ŷi, i ≤M (labeled node),

f(xi, G|Θ̂), M < i ≤ N (unlabeled node).

Note that GATV can be seen as jointly playing two minimax games with three

players, where the two maximum players generate virtual adversarial examples

and graph adversarial examples, respectively. That is, in each iteration, two

types of perturbations and the associated adversarial examples are generated

to attack: 1) the smoothness of prediction around individual clean example;

and 2) the smoothness of connected examples. By minimizing the additional

regularizers over these adversarial examples, the learned model is encouraged to

be more smooth and robust, thus achieving good generalization.

Approximation. For labeled nodes, r′i can be easily evaluated via linear
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approximation [60], i.e., calculating the gradient of D(f(xi, G|Θ̂), ỹi) w.r.t. xi.

For unlabeled nodes, such approximation is infeasible since the gradient will

always be zero. This is because D(f(xi, G|Θ̂), ỹi) achieves the minimum value

(0) at xi (note that ỹi = f(xi, G|Θ̂) for unlabeled data). Realizing that the

first-order gradient is always zero, we estimate r′i from the second-order Taylor

approximation of D(f(xi+r′i, G|Θ̂), ỹi). That is, rvi ≈ arg maxr′i,‖r′i‖≤ε′
1
2r
′T
i Hr′i

where H is the Hessian matrix of D(f(xi + r′i, G|Θ̂), ỹi). For efficiency

consideration, we calculate rvi via the power iteration approximation [112]:

rvi ≈ ε′
g

‖g‖
, where g = ∇riD(f(xi + ri, G|Θ̂, ỹi)) |ri=ξd , (6.4)

where d is a random vector. The detailed derivation of the method is referred

to [112].

6.3.3 Graph Convolution Network

Inspired by the extraordinary representation ability, many neural networks have

been used as the predictive model f(xi, G|Θ) [157, 89, 119, 155]. Under the

transductive setting, Graph Convolutional Network [89] is a state-of-the-art

model. Specifically, GCN stacks multiple graph convolution layers, which is

formulated:

H l = σ
(
D̃−

1
2 ÃD̃−

1
2

(
H l−1W l + bl

))
. (6.5)

Here, the l-th graph convolution layer conducts three operations to project

H l−1 ∈ RN×Dl−1
(the output of the (l − 1)-th layer or the node features X)

into H l ∈ RN×Dl
, where Dl−1 and Dl are the output dimension of layer l − 1

and l, respectively.

• Similar as the fully connected layer, the graph convolution layer first projects

the input (H l−1) into latent representations with W l ∈ RDl−1×Dl
and bl ∈

RDl
.

• It then propagates the latent representations (H l−1W l + bl) through the

normalized adjacency matrix D̃−
1
2 ÃD̃−

1
2 with self-connections, where D̃ =

D + I and Ã = A + I (I ∈ RN×N is an identity matrix). Here, the
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representation of node i in H is the aggregation of latent representations

in (H l−1W l + bl) of nodes connected to i (including itself due to the self-

connection).

• Finally, a non-linear activation function σ (e.g., the sigmoid, hyperbolic

tangent, and rectifier functions) is applied to allow for non-linearity.

The original objective function of GCN is,

M∑
i=1

cross-entropy(f(xi, G|Θ),yi) + λ‖Θ‖2F , (6.6)

where the second term is L2-norm to prevent overfitting. To train GCN with

our proposed GAT and GATV, we set the Γ term in Equations (6.1) and (6.3)

as the cross-entropy loss in Equation (6.6).

6.3.4 Time Complexity and Implementation

Time Complexity. As compared to GCN with standard training, the

additional computation of GCN-GAT is twofold: 1) generating graph adversarial

perturbations ({rgi , i < N}) with Equation (6.2); and, 2) calculating the value

of graph adversarial regularizer (
∑N

i=1

∑
j∈Ni

D(f(xi + rgi , G|Θ), f(xj , G|Θ))).

Considering that they can be accomplished with a back-propagation and

a forward-propagation (to calculate f(xi + rgi , G|Θ)), the computation

overhead of GCN-GAT is acceptable. Additionally, GCN-GATV computes

virtual adversarial perturbations and virtual adversarial regularizer, which

can be performed with one back-propagation and one forward-propagation,

respectively [112]. It indicates that the overhead of GCN-GATV is still

acceptable [112].

Implementation. Note that the number of connected nodes varies a lot across

the nodes in the graph, we sample K neighbors for each node to generate the

adversarial examples and calculate the graph adversarial regularizer to facilitate

the calculation. Here, the following sampling strategies are considered:

• Uniform: Neighbors are selected uniformly.

• Degree: The probability of selecting a node is proportional to the normalized
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node degree.

• Degree-Reverse: On the contrary, the probability is the reciprocal of node

degree (also normalized to sum to unity).

• PageRank: It performs PageRank [125] on the graph and takes the

normalized pagerank score as the sampling probability.

Note that the other advanced but complex sampling strategies (e.g., the one

in [177]) are not considered due to efficiency consideration.

6.4 Experiments

6.4.1 Experimental Settings

Datasets. We follow the same experimental settings as in [89] and conduct

experiments on two types of node classification datasets: two citation network

datasets (Citeseer and Cora [137]) and a knowledge graph dataset (NELL [176])2.

The statistics of the datasets are summarized in Table 6.1. Note that we adopt

the exactly same data processing and data split as in [89] for fair comparison.

• In the citation networks, nodes and edges represent documents and citation

links between documents, respectively. Note that the direction of edge is

omitted since a citation is assumed to have equal impacts on the prediction of

the two associated documents. Each document is associated with a normalized

bag-of-words feature vector and a class label. During training, we use features

of all nodes, but only 20 labels per class. Among the remaining nodes, 500

and 1,000 of them are used as validation and testing, respectively.

• NELL is a bipartite graph of 55,864 relation nodes and 9,891 entity nodes,

extracted from a knowledge graph which is a set of triplets in the format of

(e1, r, e2). Here e1 and e2 are entities, and r is the connected relation between

them. Following [89], each relation r is split into two relation nodes (r1 and

r2), from which two edges (e1, r1) and (e2, r2) are constructed. Entity nodes

and relation nodes are described by bag-of-words feature vectors (normalized)

2https://github.com/kimiyoung/planetoid.
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Table 6.1: Statistics of the experiment datasets.
Dataset #Nodes #Edges #Classes #Features Label rate

Citeseer 3,312 4,732 6 3,703 0.036
Cora 2,708 5,429 7 1,433 0.052

NELL 65,755 266,144 210 5,414 0.001

and one-hot encodings, respectively. Note that we pad zero values to align the

feature vectors of entity and relation nodes. Here only labels of entity nodes

are available and only 0.1% of entities under each class are labeled during

training.

Baselines. We compare our proposed method with the following baselines:

• LP [196]: It performs label propagation that ignores the node features and

propagates only the labels over the graph structure.

• DeepWalk [127]: It is a skip-gram based graph embedding method, which

learns the embedding of a node by predicting its contexts that are generated

by performing random walk on the graph.

• SemiEmb [169]: It learns node embeddings from node features and

leverages Laplacian regularization to encourage connected nodes to have close

embeddings.

• Planetoid [176]: Similar as DeepWalk, this method learns node embeddings

by predicting the node context, while additionally accounts for node features.

• GCN [89]: It stacks two graph convolution layers to project node features

into labels. It propagates node representations and predictions over the graph

structure to smooth the output.

• GraphSGAN [40]: This is a semi-supervised generative adversarial network

which encodes the density signal of the graph structure during the generation

of fake nodes.

Note that LP, DeepWalk, SemiEmb, and Planetoid are also baselines in the

paper of GCN, and we follow exactly their settings in [89]. In addition, the

setting of GraphSGAN is same as that in the original paper.

Parameter Settings. We implement our proposed GCN-GAT and GCN-
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Table 6.2: Performance of the compared methods on the three
datasets w.r.t. accuracy.

Category Method Citeseer Cora NELL

Graph
LP 45.3 68.0 26.5

DeepWalk 43.2 67.2 58.1

+Node
Features

SemiEmb 59.6 59.0 26.7
Planetoid 64.7 75.7 61.9

GCN 69.3 81.4 61.2

+Adversarial
GraphSGAN 73.1 83.0 —
GCN-GATV 73.7 82.6 64.7

GATV based on Tensorflow. GCN-GAT has six hyperparameters in total: 1)

D1, the size of hidden layer (GCN); 2) λ, the weight for L2-norm (GCN); 3)

dropout ratio (GCN); 4) ε, the scale of graph adversarial perturbations (GAT);

5) β, the weight for graph adversarial regularizer (GAT); and 6) K, the number

of sampled neighbors (GAT). For fair comparison, we set the D1 and λ as the

optimal values of standard GCN. But we set dropout ratio as zero in GCN-

GAT for stable training. For the remaining three parameters, ε, β, and K, we

performed grid-search within the ranges of [0.01, 0.05, 0.1, 0.5, 1], [0.01, 0.05,

0.1, 0.5, 1, 5], [1, 2, 3], respectively.

For GCN-GATV, for simplicity, we set the six hyperparameters common to

that of GCN-GAT using the optimal values found for GCN-GAT. Here we only

tune its three additional hyperparameters: 1) ε′, the scale of virtual adversarial

perturbations; 2) α, the weight for virtual adversarial regularizer; and 3) ξ, the

scale to calculate approximation. In particular, we perform grid-search to tune

the parameters ε′, α, and ξ within the ranges of [0.01, 0.05, 0.1, 0.5, 1], [0.001,

0.005, 0.01, 0.05, 0.1, 0.5], [1e-6, 1e-5, 1e-4], respectively. It should be noted that

the Uniform strategy is adopted to sample the neighbor nodes if not otherwise

specified.

6.4.2 Performance Comparison

Model Comparison. We first investigate the effectiveness of the proposed

graph adversarial training via comparing the performance of GCN-GATV

with the state-of-the-art node classification methods. Table 6.2 shows the

classification performance of the compared methods on the three datasets w.r.t.

accuracy. The performance of LP, DeepWalk, SemiEmb, and Planetoid are taken

from the GCN paper [89] since we follow its settings exactly. From the results,
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we have the following observations:

• GCN-GATV significantly outperforms the standard GCN, exhibiting relative

improvements of 6.35%, 1.47%, and 5.72% on the Citeseer, Cora, and NELL

datasets, respectively. As the only difference between GCN-GATV and GCN

is the use of the proposed graph adversarial training, the improvements

are attributed to the proposed training method which would enhance the

stabilization and generalization of GCN. Besides, the results validate that

GCN-GATV is effective in tackling the node classification task.

• GCN-GATV achieves comparable performance as that of GraphSGAN, which

is the state-of-the-art method of node classification. It demonstrates the

efficacy of the proposed method. However, our method could offer a more

feasible solution for two reasons: 1) GraphSGAN is based on the standard

generative adversarial network, which explicitly plays a mini-max game

between a discriminator and a generator (two different networks). This,

inevitably, will lead to doubling of the computation of model training and the

labor of parameter tuning. 2) For different node classification applications,

GraphSGAN needs to be built from scratch, whereas our GCN-GATV is a

generic solution that can be seamlessly applied to enhance the existing models

of the applications.

• GCN-GATV and GraphSGAN achieve better results in all the cases as

compared to the other baselines. On the Citeseer, Cora, and NELL

datasets, the relative improvements are at least 6.35%, 1.97%, and 4.52%,

respectively. This indicates the effectiveness of adversarial learning, i.e.,

dynamically playing a mini-max game either implicitly (GCN-GATV) or

explicitly (GraphSGAN) in the training phase. Moreover, the results are

consistent with findings in previous works [60, 181, 73, 112].

• Among the baselines, 1) the methods that jointly account for the graph

structure and node features (in the category of +Node Features) outperform

LP and DeepWalk that only consider graph structure. This suggests further

exploration of how to combine the connection patterns and node features

more appropriately. 2) As compared to SemiEmb that is a shallow model,

102



Planetoid and GCN achieves significant improvements (from 8.56% to 131.8%)

in all cases. The improvement is reasonable and attributed to the strong

representation ability of neural networks. As such, methods targeting to

enhance the graph neural network models, such as the graph adversarial

training, will be meaningful and influential in future.

Performance w.r.t. Node Degree. We next study how the graph adversarial

training performs on nodes with different densities of connections so as to

understand where this regularization technique can be more suitably applied.

We empirically split the nodes into three groups according to node degree (i.e.,

the number of neighbors), where node degrees are in ranges of [1, 2], [3, 5], [6, N ].

Figure 6.2 illustrates the distribution of nodes over the three groups. As can be

seen, in all the three datasets, a great number of nodes are sparsely connected

(with degrees smaller than three), and only about ten percent of the nodes are

densely connected with degrees bigger than five. By separately computing the

Figure 6.2: Percentage of nodes with different groups of node degree
in the three datasets.

accuracy of GCN and GCN-GATV over nodes in different groups, we obtain

the group-oriented performance on the three datasets, as depicted in Figure 6.3.

From the results, we observe that:

(a) Citeseer (b) Cora (c) NELL

Figure 6.3: Performance of GCN and GCN-GATV on nodes with
different degrees in Citeseer (a), Cora (b), and NELL (c).
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Table 6.3: Effect of graph adversarial regularization and virtual
adversarial regularization.

Category Method Citeseer Cora

Standard Training GCN 69.3 81.4

Adversarial
Training

GCN-VAT 72.4 79.3
GCN-GAT 73.4 82.5

GCN-GATV 73.7 82.6

• In all the three datasets, both GCN and GCN-GATV achieves the best

performance on the group of [3, 5]. The relatively worse performance on the

group of [1, 2] could be attributed to that the nodes in that group are sparsely

connected and lacks sufficient signals propagated from the neighbors, which

are helpful for the classification [196, 89, 54]. In addition, we postulate the

reason for the worse performance over nodes with degrees in [6, N ] as such

nodes are harder to classify. This is because such nodes typically represent

more general entities, such as those having connections to other entities with

different types of relations and are thus harder to be accurately classified into

a specific category.

• In most cases (except the [6, N ] group of Cora and NELL), GCN-GATV

outperforms GCN, which indicates that graph adversarial training would

benefit the prediction of nodes with different degrees and is roughly not

sensitive to the density of graph. For one of the exceptions (the [6, N ] group of

NELL), we speculate that the reason is the under-fitting of standard GCN on

such nodes (note that the performance of GCN on [6, N ] is 27.7% on average

worse than the other two groups), where additional regularization performed

by graph adversarial training worsens the under-fitting problem.

• GCN-GATV significantly and consistently outperforms GCN on the group of

[1, 2], with an average improvement of 5.45%. The result indicates that the

graph adversarial training would be more effective on the sparse part of the

graph. It should be noted that most of the graphs are sparse in real world

applications [34]. As such this result further demonstrates the potential of the

proposed methods in real world applications.
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6.4.3 Method Ablation

Recall that we design two versions of graph adversarial training: 1) basic

GAT (Equation (6.1)); and 2) incorporating virtual adversarial training

(Equation (6.3)). To evaluate the contribution of these two types of

regularizations, we compare the performance of the following solutions built

upon GCN:

• GCN: It learns the parameters of GCN with standard training, i.e., it

optimizes Equation (6.6).

• GCN-VAT: GCN with virtual adversarial training, which performs

perturbations by considering node features only. It is employed to train GCN,

i.e., optimizing Equation (6.3) with β = 0.

• GCN-GAT: It trains GCN by the basic GAT, of which the perturbations

only focus on graph structure, i.e., optimizing Equation (6.3) with α = 0.

• GCN-GATV: It accounts for both the virtual and graph adversarial

regularizations during the training of GCN.

It should be noted that, in the following, we focus on the citation graphs and

omit results on NELL, which is a bipartite graph rather than a standard simple

graph. Table 6.3 shows the performance of the compared methods on the citation

networks w.r.t. accuracy. As can be seen:

• In most of the cases, GCN performs worse than the other approaches. This

indicates that adversarial training could enhance the node classification model

as compared to the standard training; i.e., by intentionally and dynamically

generating perturbations and optimizing additional regularizers, the trained

model could by more accurate.

• GCN-GATV achieves the best performance in all cases. It shows that

perturbations targeting at both the individual nodes (virtual adversarial

perturbations) and neighbor nodes (graph adversarial perturbations) benefit

the training of graph neural network model. Moreover, it suggests that it is

beneficial to jointly consider both the node features and graph structure in
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Table 6.4: Performance of GCN-GAT as tuning all hyperparameters
(i.e., β, ε, and k) and tuning ε with fixed β = 1.0 and k = 1.

Hyperparameter Citeseer Cora

{β, ε, k} 73.4 82.5
{ε} 73.6 82.5

Table 6.5: Performance comparison of GCN-GAT with different
sampling strategies of neighbors during adversarial example
generation.

Sampling Strategy Citeseer Cora

Uniform 73.4 82.5
Degree 73.0 82.9

Degree-Reverse 73.8 82.4
PageRank 72.6 83.1

adversarial training of graph neural networks.

• Compared with GCN-VAT, GCN-GAT achieves improvements of 1.38% and

4.04% on the Citeseer and Cora datasets, respectively. This again signifies the

benefit of accounting for the graph structure in adversarial training of graph

neural networks.

6.4.4 Effect of Parameter Settings

Tuning ε Only. Consider that the number of candidate combinations

increases exponentially with the number of hyperparameters, we explore

whether comparable performance could be achieved when we tune only one

hyperparameter while fixing the others with empirical values. It should be noted

that previous work [112] has shown that tuning ε′ alone is suffice for achieving

satisfactory performance of VAT. Similarly, we tune ε with β = 1 and k = 1 and

summarize the performance of GCN-GAT in Table 6.4. As can be seen, tuning

ε alone achieves satisfactory performance which indicates that tuning ε suffices

for achieving satisfactory performance. As such, the overhead of the additional

hyperparameters of the proposed method could be ignored.

Sensitivity to Sampling Strategies. As mentioned in Section 6.3.4, different

strategies could be adopted to sample neighbor nodes for the generation of graph

adversarial perturbations and the calculation of graph adversarial regularizer.

Here, we investigate the effect of sampling strategies by comparing the results of

GCN-GAT performing different samplings. Table 6.5 shows the corresponding
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performance, from which we can observe that the performance of different

sampling strategies are comparable to each other. As such, Uniform would be a

suitable selection since it will not bring any additional computation as compared

to the other approaches.

6.5 Conclusion

In this work, we proposed a new learning method, named graph adversarial

training, which additional accounts for relations between examples as compared

to standard adversarial training. By iteratively generating adversarial examples

to attack the graph smoothness constraint and learn over adversarial examples,

the proposed method encourages the smoothness of predictions over the given

graph, a property indicating good generalization of the model. As can be seen

as a dynamic regularization technique, our method is generic and can be applied

to train most graph neural network models. We trained one well-established

model, GCN, with the proposed method to solve the node classification task.

By conducting experiments on three benchmark datasets, we demonstrated that

training GCN with our method is remarkably effective, achieving an average

improvement of 4.51%. Moreover, it also beats GCN trained with VAT,

indicating the necessity of performing AT with consideration of graph structure.
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Chapter 7

Conclusion and Future Work

We found that most existing graph-based learning methods mainly focus on

modeling local smoothness by considering the connection properties between

vertices. However, the rich information within graph data and graph applications

are ignored, which results in the suboptimal modeling of local smoothness.

In this thesis, we explored techniques to enhance the local smoothness by

additionally incorporating the ignored information from both edge and vertex

perspectives. Essentially, we focused on various edge attributes, domain

knowledge, dynamic vertex features, and adversarial perturbations. Specifically,

• We modeled relation-aware local smoothness by a multi-relation learning

framework which jointly considers multiple types of entity relations.

• We designed a new regularization term to encode domain knowledge which can

be represented by partial-order rules in the graph-based learning framework

in order to model local smoothness in a rule-guided manner (rule-guided local

smoothness).

• We captured the temporal property of local smoothness by a new neural

network operator which adaptively adjusts the strength of smoothness between

vertices according to the temporal features of vertices.

• We developed a new training approach for the advanced graph neural

networks, resulting in robust models that can defend adversarial perturbations

109



on vertex features.

We applied the proposed methods on different applications including

university ranking, stock ranking, popularity prediction and conventional node

classifications. Experimental results on benchmark datasets validated the

effectiveness of the proposed methods. For instance, our method that models

temporal local smoothness significantly outperforms conventional graph-based

learning methods. In addition, in a testing year, a simulation of the proposed

method achieves exciting revenues on both NYSE and NASDAQ with return

ratios higher than 100%. Moreover, we found that domain knowledge plays a

crucial role in graph-based learning.

In the future, we would like to explore the following directions:

• We would apply the proposed methods on more graph applications to further

test their effectiveness and investigate the scope of scenarios suitable for each

method. Furthermore, such test would suggest what additional information

should be considered according to the property of the graph application.

• We are interested in exploring more techniques on leveraging domain

knowledge in graph-based learning, including 1) incorporating knowledge

in different formats into the learning framework; and 2) inferencing over

knowledge to enhance model generalization and explainability.

• The proposed graph adversarial training introduces a new direction for

implementing local smoothness, which is in a dynamic manner along the

training procedure, as compared to the static implementations (i.e., graph

Laplacian regularization and conventional representation learning). We would

follow this line of research to further explore techniques on dynamic local

smoothness.

• While graph neural networks achieved exciting performance in many graph

applications, to improve their performance and usability, it is worthwhile

further developing such models in the following directions: 1) Elaborate

neighbor aggregation. Different neighbors might have various connections with

a center node and reflect different properties of the center node. Aggregating
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information of neighbors in an elaborate manner, e.g., by capturing the various

connections with the center node and encoding the influence among neighbors,

would be an opportunity. 2) Explainability. Like standard machine learning

models, explainability is one of the key factors of using graph neural networks

in practical applications. Therefore, it is desired to design explainable

graph neural networks which can infer explanation of a prediction by also

incorporating the graph structure. 3) Efficient training. A graph in practical

applications might contain millions even billions nodes, which is a great

challenge for applying graph neural networks, especially when the application

has strict constraint on response time. It thus requires research of efficient

and scalable training methods such as distributed training for these models.

4) Robustness training. As discussed in Chapter 6, graph neural networks are

vulnerable to adversarial attacks which commonly occur in practical graph

applications. Further research along this line would be theoretical analysis of

the impacts of attacks, certification of prediction robustness, and exploration

of strategies to better defend attacks.
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Appendix A

Appendices

A.1 Wiki Company-based Relations

In this appendix, we describe the details of Wiki company-based relations) in our

collected data (Section 5.5).

From Wikidata, one of the biggest and most active open domain knowledge

bases, we obtain 5 and 53 types of first-order (in the format of A© R−→ B©)

and second-order relations (in the format of A© R1−−→ C© R2←−− B©) between

companies corresponding to the selected stocks in NASDAQ and NYSE markets,

respectively. Note that A and B denote entities in Wikidata corresponding to

two companies; C denotes another entity bridging two company-entities in a

second-order relation; R, R1, and R2 denotes different types of entity relation

defined in Wikidata1. In Table A.1 and A.2, we summarize the extracted first-

order and second-order relations, respectively.

Table A.1: First-order Wiki company-based relations in the format of

A© R−→ B©.

Wikidata

Relation (R)
Relation Description

1 P127 Owned by: owner of the subject.

2 P155 Follows: immediately prior item in a series of which the subject is a part.

3 P156 Followed by: immediately following item in a series of which the subject is a part.

4 P355 Subsidiary: subsidiary of a company or organization.

5 P749 Parent organization: parent organization of an organisation, opposite of subsidiaries.

1https://www.wikidata.org/wiki/Wikidata:List of properties/all
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Table A.2: Second-order Wiki company-based relations in the format

of A© R1−−→ C© R2←−− B©.

Wikidata

Relations
Relation Descriptions

1
R1 = P31 Instance of : that class of which this subject is a particular example and member.

R2 = P366 Use: main use of the subject.

2
R1 = P31 Instance of : that class of which this subject is a particular example and member.

R2 = P452 Industry: industry of company or organization.

3
R1 = P31 Instance of : that class of which this subject is a particular example and member.

R2 = P1056 Product or material produced : material or product produced by an agency.

4
R1 = P112 Founded by: founder or co-founder of this organization.

R2 = P112 Founded by: founder or co-founder of this organization.

5
R1 = P112 Founded by: founder or co-founder of this organization.

R2 = P127 Owned by: owner of the subject.

6
R1 = P112 Founded by: founder or co-founder of this organization.

R2 = P169 Chief executive officer : the CEO within an organization.

7
R1 = P113 Airline hub: airport that serves as a hub for an airline.

R2 = P113 Airline hub: airport that serves as a hub for an airline.

8
R1 = P114 Airline alliance: alliance the airline belongs to.

R2 = P114 Airline alliance: alliance the airline belongs to.

9
R1 = P121 Item operated : equipment, installation or service operated by the subject.

R2 = P1056 Product or material produced : material or product produced by an agency.

10
R1 = P121 Item operated : equipment, installation or service operated by the subject.

R2 = P121 Item operated : equipment, installation or service operated by the subject.

11
R1 = P127 Owned by: owner of the subject.

R2 = P112 Founded by: founder or co-founder of this organization.

12
R1 = P127 Owned by: owner of the subject.

R2 = P127 Owned by: owner of the subject.

13
R1 = P127 Owned by: owner of the subject.

R2 = P169 Chief executive officer : the CEO within an organization.

14
R1 = P127 Owned by: owner of the subject.

R2 = P355 Subsidiary: subsidiary of a company or organization.

15
R1 = P127 Owned by: owner of the subject.

R2 = P749 Parent organization: parent organization of an organisation.

16
R1 = P127 Owned by: owner of the subject.

R2 = P1830 Owner of : entities owned by the subject.

17
R1 = P127 Owned by: owner of the subject.

R2 = P3320 Board member : member(s) of the board for the organization.

18
R1 = P155 Follows: immediately prior item in a series of which the subject is a part.

R2 = P155 Follows: immediately prior item in a series of which the subject is a part.

19
R1 = P155 Follows: immediately prior item in a series of which the subject is a part.

R2 = P355 Subsidiary: subsidiary of a company or organization.

20
R1 = P166 Award received : award or recognition received by a person, organisation.

R2 = P166 Award received : award or recognition received by a person, organisation.

21
R1 = P169 Chief executive officer : the CEO within an organization.

R2 = P112 Founded by: founder or co-founder of this organization.

22
R1 = P169 Chief executive officer : the CEO within an organization.
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R2 = P127 Owned by: owner of the subject.

23
R1 = P169 Chief executive officer : the CEO within an organization.

R2 = P169 Chief executive officer : the CEO within an organization.

24
R1 = P169 Chief executive officer : the CEO within an organization.

R2 = P3320 Board member : member(s) of the board for the organization.

25
R1 = P199 Business division: divisions of this organization.

R2 = P355 Subsidiary: subsidiary of a company or organization.

26
R1 = P306 Operating system: operating system (OS) on which a software works.

R2 = P1056 Product or material produced : material or product produced by an agency.

27
R1 = P355 Subsidiary: subsidiary of a company or organization.

R2 = P127 Owned by: owner of the subject.

28
R1 = P355 Subsidiary: subsidiary of a company or organization.

R2 = P155 Follows: immediately prior item in a series of which the subject is a part.

29
R1 = P355 Subsidiary: subsidiary of a company or organization.

R2 = P199 Business division: divisions of this organization.

30
R1 = P355 Subsidiary: subsidiary of a company or organization.

R2 = P355 Subsidiary: subsidiary of a company or organization.

31
R1 = P361 Part of : object of which the subject is a part.

R2 = P361 Part of : object of which the subject is a part.

32
R1 = P366 Use: main use of the subject.

R2 = P31 Instance of : that class of which this subject is a particular example and member.

33
R1 = P400 Platform: platform for which a work was developed or released.

R2 = P1056 Product or material produced : material or product produced by an agency.

34
R1 = P452 Industry: industry of company or organization.

R2 = P31 Instance of : that class of which this subject is a particular example and member.

35
R1 = P452 Industry: industry of company or organization.

R2 = P452 Industry: industry of company or organization.

36
R1 = P452 Industry: industry of company or organization.

R2 = P1056 Product or material produced : material or product produced by an agency.

37
R1 = P452 Industry: industry of company or organization.

R2 = P2770 Source of income: source of income of an organization or person.

38
R1 = P463 Member of : organization or club to which the subject belongs.

R2 = P463 Member of : organization or club to which the subject belongs.

39
R1 = P749 Parent organization: parent organization of an organisation.

R2 = P127 Owned by: owner of the subject.

40
R1 = P749 Parent organization: parent organization of an organisation.

R2 = P1830 Owner of : entities owned by the subject.

41
R1 = P1056 Product or material produced : material or product produced by an agency.

R2 = P31 Instance of : that class of which this subject is a particular example and member.

42
R1 = P1056 Product or material produced : material or product produced by an agency.

R2 = P121 Item operated : equipment, installation or service operated by the subject.

43
R1 = P1056 Product or material produced : material or product produced by an agency.

R2 = P306 Operating system: operating system (OS) on which a software works.

44
R1 = P1056 Product or material produced : material or product produced by an agency.

R2 = P400 Platform: platform for which a work was developed or released.

45
R1 = P1056 Product or material produced : material or product produced by an agency.
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R2 = P452 Industry: industry of company or organization.

46
R1 = P1056 Product or material produced : material or product produced by an agency.

R2 = P1056 Product or material produced : material or product produced by an agency.

47
R1 = P1344 Participant of : event a person or an organization was a participant in.

R2 = P1344 Participant of : event a person or an organization was a participant in.

48
R1 = P1830 Owner of : entities owned by the subject.

R2 = P127 Owned by: owner of the subject.

49
R1 = P1830 Owner of : entities owned by the subject.

R2 = P749 Parent organization: parent organization of an organisation.

50
R1 = P2770 Source of income: source of income of an organization or person.

R2 = P452 Industry: industry of company or organization.

51
R1 = P3320 Board member : member(s) of the board for the organization.

R2 = P127 Owned by: owner of the subject.

52
R1 = P3320 Board member : member(s) of the board for the organization.

R2 = P169 Chief executive officer : the CEO within an organization.
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